
Rehan Ahmad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8431810/publications.pdf Version: 2024-02-01

Ρεμανι Δημάλο

#	Article	IF	CITATIONS
1	Triterpenoid CDDO-Me Blocks the NF-κB Pathway by Direct Inhibition of IKKβ on Cys-179. Journal of Biological Chemistry, 2006, 281, 35764-35769.	3.4	217
2	MUC1 oncoprotein activates the lκB kinase β complex and constitutive NF-κB signalling. Nature Cell Biology, 2007, 9, 1419-1427.	10.3	174
3	MUC1-C Oncoprotein Functions as a Direct Activator of the Nuclear Factor-ήB p65 Transcription Factor. Cancer Research, 2009, 69, 7013-7021.	0.9	164
4	Dependence on the MUC1-C Oncoprotein in Non–Small Cell Lung Cancer Cells. Molecular Cancer Therapeutics, 2011, 10, 806-816.	4.1	144
5	Direct Targeting of the Mucin 1 Oncoprotein Blocks Survival and Tumorigenicity of Human Breast Carcinoma Cells. Cancer Research, 2009, 69, 5133-5141.	0.9	132
6	Triterpenoid CDDO-Methyl Ester Inhibits the Janus-Activated Kinase-1 (JAK1)→Signal Transducer and Activator of Transcription-3 (STAT3) Pathway by Direct Inhibition of JAK1 and STAT3. Cancer Research, 2008, 68, 2920-2926.	0.9	107
7	MUC1-C Oncoprotein Promotes STAT3 Activation in an Autoinductive Regulatory Loop. Science Signaling, 2011, 4, ra9.	3.6	84
8	MUC1 oncoprotein is a druggable target in human prostate cancer cells. Molecular Cancer Therapeutics, 2009, 8, 3056-3065.	4.1	68
9	MUC1-C Oncoprotein Induces TCF7L2 Transcription Factor Activation and Promotes Cyclin D1 Expression in Human Breast Cancer Cells. Journal of Biological Chemistry, 2012, 287, 10703-10713.	3.4	63
10	In vitro evaluation of anticancer and antibacterial activities of cobalt oxide nanoparticles. Journal of Biological Inorganic Chemistry, 2015, 20, 1319-1326.	2.6	58
11	MUC1-C Induces the LIN28B→LET-7→HMGA2 Axis to Regulate Self-Renewal in NSCLC. Molecular Cancer Research, 2015, 13, 449-460.	3.4	53
12	Emerging trends in colorectal cancer: Dysregulated signaling pathways (Review). International Journal of Molecular Medicine, 2021, 47, .	4.0	50
13	Targeting MUC1-C Inhibits TWIST1 Signaling in Triple-Negative Breast Cancer. Molecular Cancer Therapeutics, 2019, 18, 1744-1754.	4.1	49
14	Targeting MUC1-C inhibits the AKT-S6K1-elF4A pathway regulating TIGAR translation in colorectal cancer. Molecular Cancer, 2017, 16, 33.	19.2	48
15	In vitro evaluation of cytotoxicity, possible alteration of apoptotic regulatory proteins, and antibacterial activity of synthesized copper oxide nanoparticles. Colloids and Surfaces B: Biointerfaces, 2017, 153, 320-326.	5.0	47
16	The MUC1-C Oncoprotein Binds to the BH3 Domain of the Pro-apoptotic BAX Protein and Blocks BAX Function. Journal of Biological Chemistry, 2012, 287, 20866-20875.	3.4	46
17	MUC1-C Activates the BAF (mSWI/SNF) Complex in Prostate Cancer Stem Cells. Cancer Research, 2021, 81, 1111-1122.	0.9	46
18	Development of certain new 2-substituted-quinazolin-4-yl-aminobenzenesulfonamide as potential antitumor agents. European Journal of Medicinal Chemistry, 2016, 109, 247-253.	5.5	41

Rehan Ahmad

#	Article	IF	CITATIONS
19	MUC1-C Represses the Crumbs Complex Polarity Factor CRB3 and Downregulates the Hippo Pathway. Molecular Cancer Research, 2016, 14, 1266-1276.	3.4	36
20	Novel derivative of aminobenzenesulfonamide (3c) induces apoptosis in colorectal cancer cells through ROS generation and inhibits cell migration. BMC Cancer, 2017, 17, 4.	2.6	32
21	Selenium Nanoparticles by Moderating Oxidative Stress Promote Differentiation of Mesenchymal Stem Cells to Osteoblasts. International Journal of Nanomedicine, 2021, Volume 16, 331-343.	6.7	28
22	Cathepsin B expression in colorectal cancer in a Middle East population: Potential value as a tumor biomarker for late disease stages. Oncology Reports, 2017, 37, 3175-3180.	2.6	23
23	Development of novel benzofuran-isatin conjugates as potential antiproliferative agents with apoptosis inducing mechanism in Colon cancer. Journal of Enzyme Inhibition and Medicinal Chemistry, 2021, 36, 1423-1434.	5.2	22
24	Terminal differentiation of chronic myelogenous leukemia cells is induced by targeting of the MUC1-C oncoprotein. Cancer Biology and Therapy, 2010, 10, 483-491.	3.4	21
25	Herbal melanin inhibits colorectal cancer cell proliferation by altering redox balance, inducing apoptosis, and modulating MAPK signaling. Cancer Cell International, 2020, 20, 126.	4.1	21
26	Urolithin A induces cell cycle arrest and apoptosis by inhibiting Bcl-2, increasing p53-p21 proteins and reactive oxygen species production in colorectal cancer cells. Cell Stress and Chaperones, 2021, 26, 473-493.	2.9	20
27	Association of the microbiome with colorectal cancer development (Review). International Journal of Oncology, 2021, 58, .	3.3	20
28	Identification of the TP53-induced glycolysis and apoptosis regulator in various stages of colorectal cancer patients. Oncology Reports, 2016, 35, 1281-1286.	2.6	19
29	Design, synthesis and in vitro evaluation of anticancer and antibacterial potential of surface modified Tb(OH) ₃ @SiO ₂ core–shell nanoparticles. RSC Advances, 2016, 6, 18667-18677.	3.6	18
30	Differential expression of mucins in Middle Eastern patients with colorectal cancer. Oncology Letters, 2016, 12, 393-400.	1.8	17
31	MUC1-C Dictates JUN and BAF-Mediated Chromatin Remodeling at Enhancer Signatures in Cancer Stem Cells. Molecular Cancer Research, 2022, 20, 556-567.	3.4	17
32	Synthesis and evaluation of anticancer, antiphospholipases, antiproteases, and antimetabolic syndrome activities of some 3H-quinazolin-4-one derivatives. Journal of Enzyme Inhibition and Medicinal Chemistry, 2019, 34, 672-683.	5.2	16
33	Combining the FLT3 Inhibitor PKC412 and the Triterpenoid CDDO-Me Synergistically Induces Apoptosis in Acute Myeloid Leukemia with the Internal Tandem Duplication Mutation. Molecular Cancer Research, 2010, 8, 986-993.	3.4	15
34	A novel coordination complex of platinum (PT) induces cell death in colorectal cancer by altering redox balance and modulating MAPK pathway. BMC Cancer, 2020, 20, 685.	2.6	14
35	Bioactivities of the Green Synthesized Silver Nanoparticles Reduced Using Allium cepa L Aqueous Extracts Induced Apoptosis in Colorectal Cancer Cell Lines. Journal of Nanomaterials, 2022, 2022, 1-13.	2.7	14
36	Novel quinazoline-based sulfonamide derivative (3D) induces apoptosis in colorectal cancer by inhibiting JAK2–STAT3 pathway. OncoTargets and Therapy, 2018, Volume 11, 3313-3322.	2.0	13

Rehan Ahmad

#	Article	IF	CITATIONS
37	Development of 2-oxindolin-3-ylidene-indole-3-carbohydrazide derivatives as novel apoptotic and anti-proliferative agents towards colorectal cancer cells. Journal of Enzyme Inhibition and Medicinal Chemistry, 2021, 36, 320-329.	5.2	12
38	Induction of ROS‑mediated cell death and activation of the JNK pathway by a sulfonamide derivative. International Journal of Molecular Medicine, 2019, 44, 1552-1562.	4.0	9
39	Targeting MUCL1 protein inhibits cell proliferation and EMT by deregulating β‑catenin and increases irinotecan sensitivity in colorectal cancer. International Journal of Oncology, 2022, 60, .	3.3	5
40	MUC1 ACTIVATES C/EBPβâ€MEDIATED INDUCTION OF ALDEHYDE DEHYDROGENASE EXPRESSION IN BREAST CANCER CELLS. FASEB Journal, 2013, 27, lb99.	۲ _{0.5}	0