
Terrence J Collins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8431642/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quantifying evolving toxicity in the TAML/peroxide mineralization of propranolol. IScience, 2021, 24, 101897.	1.9	7
2	Detoxification of oil refining effluents by oxidation of naphthenic acids using TAML catalysts. Science of the Total Environment, 2021, 784, 147148.	3.9	5
3	Transformative Catalysis Purifies Municipal Wastewater of Micropollutants. ACS ES&T Water, 2021, 1, 2155-2163.	2.3	3
4	Kinetics of catalytic oxidation of the potent aquatic toxin microcystin-LR by latest generation TAML activators. Journal of Coordination Chemistry, 2020, 73, 2613-2620.	0.8	3
5	Designing Materials for Aqueous Catalysis: Ionic Liquid Gel and Silica Sphere Entrapped Iron-TAML Catalysts for Oxidative Degradation of Dyes. Environmental Science & Technology, 2020, 54, 14026-14035.	4.6	30
6	Predicting Properties of Iron(III) TAML Activators of Peroxides from Their III/IV and IV/V Reduction Potentials or a Lost Battle to Peroxidase. Chemistry - A European Journal, 2020, 26, 14738-14744.	1.7	3
7	TAML- and Buffer-Catalyzed Oxidation of Picric Acid by H2O2: Products, Kinetics, DFT, and the Mechanism of Dual Catalysis. Inorganic Chemistry, 2020, 59, 13223-13232.	1.9	4
8	Zeroâ€Order Catalysis in TAMLâ€Catalyzed Oxidation of Imidacloprid, a Neonicotinoid Pesticide. Chemistry - A European Journal, 2020, 26, 7631-7637.	1.7	9
9	Oxidative Catalysis by TAMLs: Obtaining Rate Constants for Nonâ€Absorbing Targets by UVâ€Vis Spectroscopy. ChemPhysChem, 2020, 21, 1083-1086.	1.0	4
10	Bioinspired, Multidisciplinary, Iterative Catalyst Design Creates the Highest Performance Peroxidase Mimics and the Field of Sustainable Ultradilute Oxidation Catalysis (SUDOC). ACS Catalysis, 2019, 9, 7023-7037.	5.5	29
11	A Synthetically Generated LFe ^{IV} OH _{<i>n</i>} Complex. Inorganic Chemistry, 2019, 58, 2099-2108.	1.9	12
12	Structural, Mechanistic, and Ultradilute Catalysis Portrayal of Substrate Inhibition in the TAML–Hydrogen Peroxide Catalytic Oxidation of the Persistent Drug and Micropollutant, Propranolol. Journal of the American Chemical Society, 2018, 140, 12280-12289.	6.6	21
13	Bis phenylene flattened 13-membered tetraamide macrocyclic ligand (TAML) for square planar cobalt(III). Journal of Coordination Chemistry, 2018, 71, 1822-1836.	0.8	3
14	Review of the twenty-three year evolution of the first university course in green chemistry: teaching future leaders how to create sustainable societies. Journal of Cleaner Production, 2017, 140, 93-110.	4.6	44
15	Targeting of High-Valent Iron-TAML Activators at Hydrocarbons and Beyond. Chemical Reviews, 2017, 117, 9140-9162.	23.0	153
16	Analysis of Hydrogen Atom Abstraction from Ethylbenzene by an Fe ^V O(TAML) Complex. Inorganic Chemistry, 2017, 56, 4347-4356.	1.9	8
17	Homogeneous Catalysis Under Ultradilute Conditions: TAML/NaClO Oxidation of Persistent Metaldehyde. Journal of the American Chemical Society, 2017, 139, 879-887.	6.6	27
18	Iron(III) Ejection from a "Beheaded―TAML Activator: Catalytically Relevant Mechanistic Insight into the Deceleration of Electrophilic Processes by Electron Donors. Inorganic Chemistry, 2017, 56, 10226-10234.	1.9	8

#	Article	IF	CITATIONS
19	A multidisciplinary investigation of the technical and environmental performances of TAML/peroxide elimination of Bisphenol A compounds from water. Green Chemistry, 2017, 19, 4234-4262.	4.6	46
20	Science in support of systematic leadership towards sustainability. Journal of Cleaner Production, 2017, 140, 1-9.	4.6	44
21	TAML/H ₂ O ₂ Oxidative Degradation of Metaldehyde: Pursuing Better Water Treatment for the Most Persistent Pollutants. Environmental Science & Technology, 2016, 50, 5261-5268.	4.6	32
22	Kinetic Evidence for Reactive Dimeric TAML Iron Species in the Catalytic Oxidation of NADH and a Dye by O2 in AOT Reverse Micelles. ACS Catalysis, 2016, 6, 3713-3718.	5.5	11
23	NaClO-Generated Iron(IV)oxo and Iron(V)oxo TAMLs in Pure Water. Journal of the American Chemical Society, 2016, 138, 13866-13869.	6.6	42
24	A "Beheaded―TAML Activator: A Compromised Catalyst that Emphasizes the Linearity between Catalytic Activity and p <i>K</i> _a . Inorganic Chemistry, 2016, 55, 12263-12269.	1.9	14
25	Use of a Battery of Chemical and Ecotoxicological Methods for the Assessment of the Efficacy of Wastewater Treatment Processes to Remove Estrogenic Potency. Journal of Visualized Experiments, 2016, , .	0.2	3
26	Unifying Evaluation of the Technical Performances of Iron-Tetra-amido Macrocyclic Ligand Oxidation Catalysts. Journal of the American Chemical Society, 2016, 138, 2933-2936.	6.6	39
27	On the Iron(V) Reactivity of an Aggressive Tailâ€Fluorinated Tetraamido Macrocyclic Ligand (TAML) Activator. European Journal of Inorganic Chemistry, 2015, 2015, 1445-1452.	1.0	17
28	Reactivity and Operational Stability of <i>N</i> â€Tailed TAMLs through Kinetic Studies of the Catalyzed Oxidation of Orange II by H ₂ O ₂ : Synthesis and Xâ€ray Structure of an <i>N</i> â€Phenyl TAML. Chemistry - A European Journal, 2015, 21, 6226-6233.	1.7	39
29	Kinetic and mechanistic studies of the reactivity of iron(IV) TAMLs toward organic sulfides in water: resolving a fast catalysis <i>versus</i> slower single-turnover reactivity dilemma. Journal of Coordination Chemistry, 2015, 68, 3032-3045.	0.8	7
30	Activation of Dioxygen by a TAML Activator in Reverse Micelles: Characterization of an Fe ^{III} Fe ^{IV} Dimer and Associated Catalytic Chemistry. Journal of the American Chemical Society, 2015, 137, 9704-9715.	6.6	28
31	Iron(IV) or iron(V)? Heterolytic or free radical? Oxidation pathways of a TAML activator in acetonitrile at â^'40°C. Journal of Coordination Chemistry, 2015, 68, 3046-3057.	0.8	8
32	Removal of ecotoxicity of 17α-ethinylestradiol using TAML/peroxide water treatment. Scientific Reports, 2015, 5, 10511.	1.6	42
33	Activation Parameters as Mechanistic Probes in the TAML Iron(V)–Oxo Oxidations of Hydrocarbons. Chemistry - A European Journal, 2015, 21, 1803-1810.	1.7	52
34	Reactivity and Operational Stability ofN-Tailed TAMLs through Kinetic Studies of the Catalyzed Oxidation of Orangeâ€II by H2O2: Synthesis and X-ray Structure of anN-Phenyl TAML. Chemistry - A European Journal, 2015, 21, 5993-5993.	1.7	1
35	Rapid degradation of oxidation resistant nitrophenols by TAML activator and H ₂ O ₂ . Catalysis Science and Technology, 2015, 5, 1775-1782.	2.1	25
36	Estimation of rate constants in nonlinear reactions involving chemical inactivation of oxidation catalysts. Journal of Mathematical Chemistry, 2014, 52, 1460-1476.	0.7	19

#	Article	IF	CITATIONS
37	Formation of a Room Temperature Stable Fe ^V (O) Complex: Reactivity Toward Unactivated C–H Bonds. Journal of the American Chemical Society, 2014, 136, 9524-9527.	6.6	150
38	Electrocatalytic Oxygen Evolution with an Immobilized TAML Activator. Journal of the American Chemical Society, 2014, 136, 5603-5606.	6.6	71
39	Valence-to-Core-Detected X-ray Absorption Spectroscopy: Targeting Ligand Selectivity. Journal of the American Chemical Society, 2014, 136, 10076-10084.	6.6	37
40	Zebrafish assays as developmental toxicity indicators in the green design of TAML oxidation catalysts. Green Chemistry, 2013, 15, 2339.	4.6	25
41	Oxidation of Ethidium Using TAML Activators: A Model for High School Research Performed in Partnership with University Scientists. Journal of Chemical Education, 2013, 90, 326-331.	1.1	5
42	Designing endocrine disruption out of the next generation of chemicals. Green Chemistry, 2013, 15, 181-198.	4.6	123
43	In situ enzymatic generation of H2O2 from O2 for use in oxidative bleaching and catalysis by TAML activators. New Journal of Chemistry, 2013, 37, 3488.	1.4	13
44	TAML Activator/Peroxide-Catalyzed Facile Oxidative Degradation of the Persistent Explosives Trinitrotoluene and Trinitrobenzene in Micellar Solutions. Environmental Science & Technology, 2013, 47, 5319-5326.	4.6	27
45	TAML Activator-Based Amperometric Analytical Devices as Alternatives to Peroxidase Biosensors. Analytical Chemistry, 2012, 84, 9096-9100.	3.2	19
46	Facile destruction of formulated chlorpyrifos through green oxidation catalysis. Catalysis Science and Technology, 2012, 2, 1165.	2.1	24
47	Experimental and Theoretical Evidence for Multiple Fe ^{IV} Reactive Intermediates in TAMLâ€Activator Catalysis: Rationalizing a Counterintuitive Reactivity Order. Chemistry - A European Journal, 2012, 18, 10244-10249.	1.7	22
48	Prediction of high-valent iron K-edge absorption spectra by time-dependent Density Functional Theory. Dalton Transactions, 2011, 40, 11070.	1.6	90
49	Fe-TAML/hydrogen peroxide degradation of concentrated solutions of the commercial azo dye tartrazine. Catalysis Science and Technology, 2011, 1, 437.	2.1	43
50	Rapid, Biomimetic Degradation in Water of the Persistent Drug Sertraline by TAML Catalysts and Hydrogen Peroxide. Environmental Science & Technology, 2011, 45, 7882-7887.	4.6	56
51	On the Reactivity of Mononuclear Iron(V)oxo Complexes. Journal of the American Chemical Society, 2011, 133, 18546-18549.	6.6	73
52	Direct Detection of Oxygen Ligation to the Mn ₄ Ca Cluster of Photosystem II by Xâ€ray Emission Spectroscopy. Angewandte Chemie - International Edition, 2010, 49, 800-803.	7.2	78
53	Oxidation of pinacyanol chloride by H2O2 catalyzed by FeIII complexed to tetraamidomacrocyclic ligand: unusual kinetics and product identification. Journal of Coordination Chemistry, 2010, 63, 2605-2618.	0.8	17
54	Thermodynamic, Electrochemical, High-Pressure Kinetic, and Mechanistic Studies of the Formation of Oxo FeIVâ°'TAML Species in Water. Inorganic Chemistry, 2010, 49, 11439-11448.	1.9	44

#	Article	IF	CITATIONS
55	Fast Water Oxidation Using Iron. Journal of the American Chemical Society, 2010, 132, 10990-10991.	6.6	578
56	Designing Green Oxidation Catalysts for Purifying Environmental Waters. Journal of the American Chemical Society, 2010, 132, 9774-9781.	6.6	108
57	The Impact of Surfactants on Fe ^{III} –TAML atalyzed Oxidations by Peroxides: Accelerations, Decelerations, and Loss of Activity. Chemistry - A European Journal, 2009, 15, 10199-10209.	1.7	18
58	Feasible attachment of dinuclear ruthenium complex to gold electrode surface via new ligand substitution reaction. Electrochimica Acta, 2009, 54, 1286-1291.	2.6	1
59	Response from Collins. Environmental Science & amp; Technology, 2009, 43, 2994-2994.	4.6	1
60	Design of More Powerful Iron-TAML Peroxidase Enzyme Mimics. Journal of the American Chemical Society, 2009, 131, 18052-18053.	6.6	81
61	Activation of Hydrogen Peroxide by an Fe-TAML Complex in Strongly Alkaline Aqueous Solution: Homogeneous Oxidation Catalysis with Industrial Significance. Industrial & Engineering Chemistry Research, 2009, 48, 7072-7076.	1.8	20
62	Mechanistic considerations on the reactivity of green FeIII-TAML activators of peroxides. Advances in Inorganic Chemistry, 2009, 61, 471-521.	0.4	58
63	High-valent first-row transition-metal complexes of tetraamido (4N) and diamidodialkoxido or diamidophenolato (2N/2O) ligands: Synthesis, structure, and magnetochemistry. Coordination Chemistry Reviews, 2008, 252, 2050-2071.	9.5	71
64	Catalaseâ^'Peroxidase Activity of Iron(III)â^'TAML Activators of Hydrogen Peroxide. Journal of the American Chemical Society, 2008, 130, 15116-15126.	6.6	158
65	(TAML)Fe ^{IV} â•O Complex in Aqueous Solution: Synthesis and Spectroscopic and Computational Characterization. Inorganic Chemistry, 2008, 47, 3669-3678.	1.9	121
66	Mechanistically Inspired Design of Fe ^{III} â^'TAML Peroxide-Activating Catalysts. Journal of the American Chemical Society, 2008, 130, 12260-12261.	6.6	38
67	Destruction of Estrogens Using Fe-TAML/Peroxide Catalysis. Environmental Science & Technology, 2008, 42, 1296-1300.	4.6	72
68	Persuasive Communication about Matters of Great Urgency: Endocrine Disruption. Environmental Science & Technology, 2008, 42, 7555-7558.	4.6	15
69	Density Functional Theory Study of the Structural, Electronic, and Magnetic Properties of a μ-oxo Bridged Dinuclear Fe ^{IV} Complex Based on a Tetra-Amido Macrocyclic Ligand. Inorganic Chemistry, 2008, 47, 9372-9379.	1.9	12
70	Attaining Control by Design over the Hydrolytic Stability of Fe-TAML Oxidation Catalysts. Journal of the American Chemical Society, 2008, 130, 4497-4506.	6.6	45
71	Human Pharmaceuticals in the Aquatic Environment:  A Challenge to Green Chemistry. Chemical Reviews, 2007, 107, 2319-2364.	23.0	959
72	Felll–TAML-catalyzed green oxidative degradation of the azodyeOrange II by H2O2and organic peroxides: products, toxicity, kinetics, and mechanisms. Green Chemistry, 2007, 9, 49-57.	4.6	158

#	Article	IF	CITATIONS
73	Polarized X-ray Absorption Spectroscopy of Single-Crystal Mn(V) Complexes Relevant to the Oxygen-Evolving Complex of Photosystem II. Journal of the American Chemical Society, 2007, 129, 12989-13000.	6.6	53
74	Chemical and Spectroscopic Evidence for an FeV-Oxo Complex. Science, 2007, 315, 835-838.	6.0	435
75	Fe ^{III} â€TAMLâ€Catalyzed Green Oxidative Decolorization of Textile Dyes in Wastewater. Clean - Soil, Air, Water, 2007, 35, 459-464.	0.7	7
76	Humic acid modified Fenton reagent for enhancement of the working pH range. Applied Catalysis B: Environmental, 2007, 72, 26-36.	10.8	235
77	Little Green Molecules. Scientific American, 2006, 294, 82-90.	1.0	18
78	Oxidation of sulfur components in diesel fuel using Fe-TAML® catalysts and hydrogen peroxide. Catalysis Today, 2006, 116, 554-561.	2.2	98
79	High-valent iron complexes with tetraamido macrocyclic ligands: Structures, Mössbauer spectroscopy, and DFT calculations. Journal of Inorganic Biochemistry, 2006, 100, 606-619.	1.5	74
80	Total Degradation of Fenitrothion and Other Organophosphorus Pesticides by Catalytic Oxidation Employing Fe-TAML Peroxide Activators. Journal of the American Chemical Society, 2006, 128, 12058-12059.	6.6	110
81	Iron-TAML® Catalysts in the Pulp and Paper Industry. ACS Symposium Series, 2006, , 156-169.	0.5	12
82	Activity-Stability Parameterization of Homogeneous Green Oxidation Catalysts. Chemistry - A European Journal, 2006, 12, 9336-9345.	1.7	57
83	"Green―Oxidation Catalysis for Rapid Deactivation of Bacterial Spores. Angewandte Chemie - International Edition, 2006, 45, 3974-3977.	7.2	59
84	Catalytically Active μ-Oxodiiron(IV) Oxidants from Iron(III) and Dioxygen. Journal of the American Chemical Society, 2005, 127, 2505-2513.	6.6	158
85	XANES Evidence Against a Manganyl Species in the S3 State of the Oxygen-Evolving Complex. Journal of the American Chemical Society, 2004, 126, 8070-8071.	6.6	61
86	Introduction of Chirality to the Remote, Open Face of a Metalloporphyrin Through Coordination to the Metal of a Specially Designed Pendant Arm ChemInform, 2003, 34, no.	0.1	0
87	Understanding the Mechanism of H+-Induced Demetalation as a Design Strategy for Robust Iron(III) Peroxide-Activating Catalysts. Journal of the American Chemical Society, 2003, 125, 12378-12379.	6.6	80
88	Introduction of Chirality to the Remote, Open Face of a Metalloporphyrin through Coordination to the Metal of a Specially Designed Pendant Arm. Chemistry Letters, 2003, 32, 20-21.	0.7	3
89	Tetraamido Macrocyclic Ligand Catalytic Oxidant Activators in the Pulp and Paper Industry. ACS Symposium Series, 2002, , 47-60.	0.5	10
90	Mononuclear–dinuclear helicate interconversion of dibromo{N,N′-bis[(S)-1-2-(pyridyl)ethyl]pyridine-2,6-dicarboxamidate}copper(ii) via a deprotonation–protonation processElectronic supplementary information (ESI) available: preparation of (R)- and (S)-PEPDAH2. See http://www.rsc.org/suppdata/cc/b2/b202700c/. Chemical Communications, 2002, , 1396-1397.	2.2	27

#	Article	IF	CITATIONS
91	Rapid Total Destruction of Chlorophenols by Activated Hydrogen Peroxide. Science, 2002, 296, 326-328.	6.0	342
92	Resolution of overlapping charge-transfer transitions by a combined absorption-MCD–MLD approach. Chemical Physics Letters, 2002, 365, 164-169.	1.2	0
93	TAML Oxidant Activators:  A New Approach to the Activation of Hydrogen Peroxide for Environmentally Significant Problems. Accounts of Chemical Research, 2002, 35, 782-790.	7.6	290
94	ESSAYS ON SCIENCE AND SOCIETY: Toward Sustainable Chemistry. Science, 2001, 291, 48-49.	6.0	123
95	Modifying the Chemistry of a Macrocyclic Cobalt Complex by Remote Site Manipulation. Journal of Physical Chemistry B, 2001, 105, 8821-8828.	1.2	7
96	Green chemistry. Sustaining a high-technology civilization. Pure and Applied Chemistry, 2001, 73, 113-118.	0.9	11
97	Synthetic pathways and processes in green chemistry. Introductory overview. Pure and Applied Chemistry, 2000, 72, 1207-1228.	0.9	430
98	Nickel L-Edge Soft X-ray Spectroscopy of Nickelâ^'Iron Hydrogenases and Model CompoundsEvidence for High-Spin Nickel(II) in the Active Enzyme. Journal of the American Chemical Society, 2000, 122, 10544-10552.	6.6	140
99	Chemical dependence of interatomic X-ray transition energies and intensities – a study of Mn Kβ″ and Kβ2,5 spectra. Chemical Physics Letters, 1999, 302, 119-124.	1.2	164
100	Synthesis and Crystallographic Characterization of an Octameric Water Complex, (H2O)8. Journal of the American Chemical Society, 1999, 121, 3551-3552.	6.6	239
101	Designing ligands to achieve robust oxidation catalysts. Iron based systems. Coordination Chemistry Reviews, 1998, 174, 361-390.	9.5	71
102	New Magnetically Coupled Bimetallic Complexes as Potential Building Blocks for Magnetic Materials. Chemistry - A European Journal, 1998, 4, 2173-2181.	1.7	22
103	Permeability, Cytotoxicity, and Genotoxicity of Chromium(V) and Chromium(VI) Complexes in V79 Chinese Hamster Lung Cells. Chemical Research in Toxicology, 1998, 11, 119-129.	1.7	50
104	A Method for Driving O-Atom Transfer:Â Secondary Ion Binding to a Tetraamide Macrocyclic Ligand. Journal of the American Chemical Society, 1998, 120, 11540-11541.	6.6	135
105	Ligand Design Approach for Securing Robust Oxidation Catalysts. Journal of the American Chemical Society, 1998, 120, 4867-4868.	6.6	72
106	Electron-Transfer Oxidation by Phase-Separating Reagents. Inorganic Chemistry, 1998, 37, 4748-4750.	1.9	13
107	Microprobe X-ray Absorption Spectroscopic Determination of the Oxidation State of Intracellular Chromium following Exposure of V79 Chinese Hamster Lung Cells to Genotoxic Chromium Complexes. Chemical Research in Toxicology, 1997, 10, 533-535.	1.7	56
108	Ein stabiler Aquaeisen(<scp>III</scp>)â€Komplex mit <i>S</i> = 1: Struktur und spektroskopische Eigenschaften. Angewandte Chemie, 1995, 107, 1345-1348.	1.6	7

#	Article	IF	CITATIONS
109	Ligand Design for Securing Ferromagnetic Exchange Coupling in Multimetallic Complexes. Chemistry - A European Journal, 1995, 1, 528-537.	1.7	22
110	A Stable Aquairon(III) Complex withS= 1: Structure and Spectroscopic Properties. Angewandte Chemie International Edition in English, 1995, 34, 1216-1219.	4.4	47
111	Introducing Green Chemistry in Teaching and Research. Journal of Chemical Education, 1995, 72, 965.	1.1	70
112	Designing Ligands for Oxidizing Complexes. Accounts of Chemical Research, 1994, 27, 279-285.	7.6	260
113	Structure of tetraphenylphosphonium μ-{[η4-2,4-bis(2-hydroxy-2-methylpropanamido)-2,4-dimethyl-3-oxopentane]cobalt(III)}tetranitratocerium(III) dichloromethane. Acta Crystallographica Section C: Crystal Structure Communications, 1993, 49, 1426-1428.	0.4	2
114	High-valent transition metal chemistry. Moessbauer and EPR studies of high-spin (S = 2) iron(IV) and intermediate-spin (S = 3/2) iron(III) complexes with a macrocyclic tetraamido-N ligand. Journal of the American Chemical Society, 1993, 115, 6746-6757.	6.6	178
115	In vitro DNA damage and mutations induced by a macrocyclic tetraamide chromium(V) complex: implications for the role of Cr(V) peptide complexes in chromium-induced cancers. Carcinogenesis, 1993, 14, 1875-1880.	1.3	53
116	High valent transition metal chemistry. Synthesis and characterization of an intermediate-spin iron(IV) complex of a strong .piacid ligand. Journal of the American Chemical Society, 1992, 114, 8724-8725.	6.6	57
117	Vibrational and electrochemical properties of a series of stable manganese(V)-oxo complexes. Inorganic Chemistry, 1992, 31, 1548-1550.	1.9	72
118	A square-planar nickel(III) complex of an innocent ligand system. Journal of the American Chemical Society, 1991, 113, 4708-4709.	6.6	98
119	Design, synthesis, and structure of a macrocyclic tetraamide that stabilizes high-valent middle and later transition metals. Inorganic Chemistry, 1991, 30, 4204-4210.	1.9	47
120	Stable highly oxidizing cobalt complexes of macrocyclic ligands. Journal of the American Chemical Society, 1991, 113, 8419-8425.	6.6	125
121	Synthesis of chiral square planar cobalt(III) complexes and catalytic asymmetric epoxidations with these complexes. Journal of the Chemical Society Perkin Transactions II, 1990, , 353.	0.9	21
122	Chromium(V)-oxo complexes of macrocyclic tetraamido-N ligands tailored for highly oxidized middle transition metal complexes: a new oxygen-18-labeling reagent and a structure with four nonplanar amides. Inorganic Chemistry, 1990, 29, 3433-3436.	1.9	58
123	Stabilization of mononuclear five-coordinate iron(IV). Journal of the American Chemical Society, 1990, 112, 5637-5639.	6.6	91
124	A water-stable manganese(V)-oxo complex: definitive assignment of a .nu.Mnv.tplbond.O infrared vibration. Journal of the American Chemical Society, 1990, 112, 899-901.	6.6	171
125	Nichtplanare Amidgruppen nur durch Câ€Nâ€Bindungsverdrillung. Angewandte Chemie, 1989, 101, 924-925.	1.6	3
126	Eine nichtplanare Amidgruppe im Liganden des ersten makrocyclischen, quadratischâ€planaren Cobalt(III)â€Komplexes. Angewandte Chemie, 1989, 101, 1552-1554.	1.6	5

#	Article	IF	CITATIONS
127	Amides Nonplanar Solely by Cï£;N Bond Rotation. Angewandte Chemie International Edition in English, 1989, 28, 912-914.	4.4	7
128	The First Macrocyclic Square-Planar Cobalt(III) Complex Relieves Ring Strain by Forming a Nonplanar Amide. Angewandte Chemie International Edition in English, 1989, 28, 1509-1511.	4.4	18
129	A manganese(V)-oxo complex. Journal of the American Chemical Society, 1989, 111, 4511-4513.	6.6	182
130	Kinetics, mechanism, and thermodynamic aspects of the interconversion of complexes of planar and nonplanar metallo-amido-N-groups. Journal of the American Chemical Society, 1988, 110, 1162-1167.	6.6	10
131	Neutral square planar cobalt(III) complexes. Journal of the American Chemical Society, 1988, 110, 423-428.	6.6	36
132	Catalytic oxidation of styrene in the presence of square planar cobalt(III) complexes of polyanionic chelating ligands. Journal of the Chemical Society Chemical Communications, 1987, , 803.	2.0	27
133	Alcohol electrooxidation catalysts from degraded polyanionic chelating ligand complexes. The uncertainty for catalyst identification that accompanies a decomposing catalytic system. Inorganic Chemistry, 1987, 26, 731-736.	1.9	10
134	Electrochemical studies of reactive polyanionic chelating ligand complexes in liquid sulfur dioxide. Formation of highly oxidizing inorganic complexes. Inorganic Chemistry, 1987, 26, 1157-1160.	1.9	8
135	Oxidative and hydrolytic decomposition of a polyanionic chelating ligand. Inorganic Chemistry, 1987, 26, 1161-1168.	1.9	7
136	A novel nonplanar amido-N ligand type. Nonplanarity in the amido-N ligand induced by steric effects. Inorganic Chemistry, 1987, 26, 1674-1677.	1.9	11
137	Highly stabilized copper(III) complexes. Journal of the American Chemical Society, 1987, 109, 2974-2979.	6.6	139
138	Paramagnetic cobalt(III) complexes of polyanionic chelating ligands. Journal of the American Chemical Society, 1986, 108, 2088-2090.	6.6	71
139	Nonplanar amide groups as ligands. Journal of the American Chemical Society, 1986, 108, 5333-5339.	6.6	37
140	Interconversion of planar and nonplanar N-amido ligands. Thermodynamically stable nonplanar N-amido ligands. Journal of the American Chemical Society, 1986, 108, 6593-6605.	6.6	47
141	Reactions of osmium(IV) complexes of PAC ligands with azide species. Inorganic Chemistry, 1986, 25, 4322-4323.	1.9	35
142	The design of multianionic chelating ligands for the production of inorganic oxidizing agents. Osmium coordination chemistry that provides stable potent oxidizing agents and stable potent reducing agents. Journal of the American Chemical Society, 1984, 106, 4460-4472.	6.6	49
143	Complexation of a tetradentate tetra-anionic ligand to osmium(IV): a step towards the development of multianionic chelating ligands for use in stabilizing oxidizing inorganic complexes. Journal of the Chemical Society Chemical Communications, 1984, , 198.	2.0	12
144	Synthesis and characterization of stable cobalt(IV) coordination complexes: molecular structure of trans-[.eta.4-1,2-bis(3,5-dichloro-2-hydroxybenzamido)-4,5-dichlorobenzene]bis(4-tert-butylpyridine)cobalt(IV). Journal of the American Chemical Society, 1984, 106, 5037-5038.	6.6	66

#	Article	IF	CITATIONS
145	Oxidation of ruthenium(II) and ruthenium(III) porphyrins. Crystal structures of .muoxo-bis[(p-methylphenoxo)(meso-tetraphenylporphyrinato)ruthenium(IV)] and ethoxo(meso-tetraphenylporphyrinato)(ethanol)ruthenium(III)-bisethanol. Journal of the American Chemical Society, 1984, 106, 5151-5163.	6.6	123
146	The â€~pocket' porphyrins: Hemoprotein models with lowered CO affinities. Inorganica Chimica Acta, 1983, 79, 101-102.	1.2	1
147	Complexation of secondary amides to chromium(III): the X-ray structure of a molecule with two modes of monodentate organic amide co-ordination. Journal of the Chemical Society Chemical Communications, 1983, , 681.	2.0	17
148	Synthesis and characterization of the "pocket" porphyrins. Journal of the American Chemical Society, 1983, 105, 3038-3052.	6.6	103
149	Substrate Organometallic Chemistry of Osmium Tetraoxide: Formation of a Novel Type of Carbon Dioxide Coordination. Journal of the American Chemical Society, 1982, 104, 7352-7353.	6.6	37
150	The tris(triphenylphosphine)osmium zerovalent complexes Os(CO)2(PPh3)3, .Os(CO)(CNR)(PPh3)3, Os(CO)(CNR)(PPh3)3 and derived compounds. Journal of Organometallic Chemistry, 1982, 231, 161-172.	0.8	32
151	Binuclear ruthenium(II) porphyrins: reinvestigation of their preparation, characterization, and interactions with molecular oxygen. Journal of the American Chemical Society, 1981, 103, 7030-7032.	6.6	66
152	The "pocket" porphyrin: a hemoprotein model with lowered carbon monoxide affinity. Journal of the American Chemical Society, 1981, 103, 2450-2452.	6.6	57
153	Use of magnetic circular dichroism to determine axial ligation for some sterically encumbered iron(II) porphyrin complexes. Journal of the American Chemical Society, 1981, 103, 5636-5648.	6.6	19
154	Preparation of octahedral hydrido-aquo-ruthenium(II) complexes, and structural characterisation of hydridoaquodicarbonylbis(triphenylphosphine)-ruthenium(II) tetrafluoroborate. Journal of Organometallic Chemistry, 1981, 206, 109-117.	0.8	34
155	Stepwise reduction of the thiocarbonyl ligand: hydride transfer to CS: thioformyl, thioformaldehyde, methylthiolato, secondary carbene, formyl and iminoformyl complexes of osmium. Journal of Organometallic Chemistry, 1978, 159, 73-89.	0.8	96
156	Co-ordinated thioformaldehyde monomer. Synthesis and Reactions of [Os(η2-CH2S)(CO)2(PPh3)2]. Journal of the Chemical Society Chemical Communications, 1977, , 901-902.	2.0	25
157	A four-membered osmium metallocycle from inter-ligand reaction between thiocarboxamido- and 1977, 141, C5-C9.	0.8	33
158	Neutral and cationic dithiocarbonyl complexes of osmium(II). Journal of Organometallic Chemistry, 1977, 139, C9-C12.	0.8	20
159	Hydrido-thiocarbonyl complexes as precursors of low-valent thiocarbonyl complexes. Journal of Organometallic Chemistry, 1977, 139, C56-C58.	0.8	12
160	Structure of a η2-dithiomethylester-ruthenium(II) complex and further reactions of a η1-dithiomethylester-ruthenium (II) complex. Journal of Organometallic Chemistry, 1977, 125, C23-C28.	0.8	31
161	Triphenylphosphoniodithiocarboxylato-SS′-carbonylbis(triphenylphosphine)-iridium(I) tetrafluoroborate: X-ray structure of an apparent ÎCS2complex of iridium. Journal of the Chemical Society Chemical Communications, 1976, , 475-476.	2.0	16
162	Thioformyl and formyl complexes of osmium(II). Journal of the Chemical Society Chemical Communications, 1976, , 1044.	2.0	43

#	Article	IF	CITATIONS
163	Synthesis of low-valent thiocarbonyl complexes 1,2-elimination of methylthiol from -metal-hydrido-dithiomethylester complexes. Os(cs)(CO)2(PPh3)2 and IrCl(CS)(PPh3)2 Journal of Organometallic Chemistry, 1976, 121, C41-C44.	0.8	40
164	Cyclic transition-metal carbene complexes from ring-closing reactions on the π-bound substrates CS2 and CSe2. 1,3-Dithiolan-2-ylidene and 1,3-diselenolan-2-ylidene complexes of ruthenium(II) and osmium(II). Journal of Organometallic Chemistry, 1976, 107, C37-C39.	0.8	23