Weiping Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8431218/publications.pdf

Version: 2024-02-01

218677 276875 2,159 41 26 41 h-index citations g-index papers 41 41 41 4074 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Facile synthesis of silver@graphene oxide nanocomposites and their enhanced antibacterial properties. Journal of Materials Chemistry, 2011, 21, 4593.	6.7	313
2	Large scale photochemical synthesis of M@TiO2 nanocomposites (M = Ag, Pd, Au, Pt) and their optical properties, CO oxidation performance, and antibacterial effect. Nano Research, 2010, 3, 244-255.	10.4	254
3	Microbiota Modulate Tumoral Immune Surveillance in Lung through a γÎT17 Immune Cell-Dependent Mechanism. Cancer Research, 2014, 74, 4030-4041.	0.9	130
4	Improving Leadâ€Free Double Perovskite Cs ₂ NaBiCl ₆ Nanocrystal Optical Properties via Ion Doping. Advanced Optical Materials, 2020, 8, 1901919.	7.3	118
5	Highly Active Carbonaceous Nanofibers: A Versatile Scaffold for Constructing Multifunctional Free-Standing Membranes. ACS Nano, 2011, 5, 8148-8161.	14.6	117
6	Melatonin protects against alcoholic liver injury by attenuating oxidative stress, inflammatory response, and apoptosis. European Journal of Pharmacology, 2009, 616, 287-292.	3.5	94
7	MnO Nanocrystals: A Platform for Integration of MRI and Genuine Autophagy Induction for Chemotherapy. Advanced Functional Materials, 2013, 23, 1534-1546.	14.9	75
8	Di-(2-ethylhexyl) phthalate could disrupt the insulin signaling pathway in liver of SD rats and LO2 cells via PPARÎ ³ . Toxicology and Applied Pharmacology, 2017, 316, 17-26.	2.8	72
9	Controlled Synthesis and Biocompatibility of Water-Soluble ZnO Nanorods/Au Nanocomposites with Tunable UV and Visible Emission Intensity. Journal of Physical Chemistry C, 2008, 112, 19872-19877.	3.1	67
10	Di(2-ethylhexyl) phthalate exacerbates non-alcoholic fatty liver in rats and its potential mechanisms. Environmental Toxicology and Pharmacology, 2016, 42, 38-44.	4.0	66
11	Prognostic Role of Human Epidermal Growth Factor Receptor in Gastric Cancer: A Systematic Review and Meta-analysis. Archives of Medical Research, 2013, 44, 380-389.	3.3	63
12	Magnetic Alloy Nanorings Loaded with Gold Nanoparticles: Synthesis and Applications as Multimodal Imaging Contrast Agents. Advanced Functional Materials, 2010, 20, 3701-3706.	14.9	54
13	The effects of di 2-ethyl hexyl phthalate (DEHP) on cellular lipid accumulation in HepG2 cells and its potential mechanisms in the molecular level. Toxicology Mechanisms and Methods, 2017, 27, 245-252.	2.7	52
14	Di(2-ethylhexyl) phthalate promotes hepatic fibrosis by regulation of oxidative stress and inflammation responses in rats. Environmental Toxicology and Pharmacology, 2019, 68, 109-119.	4.0	51
15	Tuning Magnetic Property and Autophagic Response for Selfâ€Assembled Ni–Co Alloy Nanocrystals. Advanced Functional Materials, 2013, 23, 5930-5940.	14.9	47
16	Bioinspired greigite magnetic nanocrystals: chemical synthesis and biomedicine applications. Scientific Reports, 2013, 3, 2994.	3.3	42
17	Melatonin Upregulates the Activity of AMPK and Attenuates Lipid Accumulation in Alcohol-induced Rats. Alcohol and Alcoholism, 2016, 51, 11-19.	1.6	42
18	Sequential Growth of NaYF ₄ :Yb/Er@NaGdF ₄ Nanodumbbells for Dual-Modality Fluorescence and Magnetic Resonance Imaging. ACS Applied Materials & Dual-Modality Fluorescence and Magnetic Resonance Imaging. ACS Applied Materials & Dual-Modality Fluorescence and Magnetic Resonance Imaging. ACS Applied Materials & Dual-Modality Fluorescence and Magnetic Resonance Imaging. ACS Applied Materials & Dual-Modality Fluorescence and Magnetic Resonance Imaging. ACS Applied Materials & Dual-Modality Fluorescence and Magnetic Resonance Imaging. ACS Applied Materials & Dual-Modality Fluorescence and Magnetic Resonance Imaging. ACS Applied Materials & Dual-Modality Fluorescence and Magnetic Resonance Imaging. ACS Applied Materials & Dual-Modality Fluorescence and Magnetic Resonance Imaging. ACS Applied Materials & Dual-Modality Fluorescence and Magnetic Resonance Imaging. ACS Applied Materials & Dual-Modality Fluorescence and Magnetic Resonance Imaging. ACS Applied Materials & Dual-Modality Fluorescence Action National Action National Action National Action National Action National Action National Action Nation	8.0	41

#	Article	IF	CITATIONS
19	Melatonin and tryptophan circadian profiles in patients with advanced non-small cell lung cancer. Advances in Therapy, 2009, 26, 886-892.	2.9	37
20	Magnetic hydroxyapatite nanoworms for magnetic resonance diagnosis of acute hepatic injury. Nanoscale, 2016, 8, 1684-1690.	5.6	36
21	\hat{l}^2 -Cyclodextrin-Stabilized Au Nanoparticles for the Detection of Butyl Benzyl Phthalate. ACS Applied Nano Materials, 2019, 2, 2743-2751.	5.0	35
22	Acetylsalicylic acid enhances the anti-inflammatory effect of fluoxetine through inhibition of NF-κB, p38-MAPK and ERK1/2 activation in lipopolysaccharide-induced BV-2 microglia cells. Neuroscience, 2014, 275, 296-304.	2.3	34
23	Magnetic liposomal emodin composite with enhanced killing efficiency against breast cancer. Biomaterials Science, 2019, 7, 867-875.	5.4	33
24	Liquid–liquid interfacial self-assembled Au NP arrays for the rapid and sensitive detection of butyl benzyl phthalate (BBP) by surface-enhanced Raman spectroscopy. Analytical and Bioanalytical Chemistry, 2018, 410, 5277-5285.	3.7	32
25	Bimetallic plasmonic Au@Ag nanocuboids for rapid and sensitive detection of phthalate plasticizers with label-free surface-enhanced Raman spectroscopy. Analyst, The, 2019, 144, 3861-3869.	3.5	31
26	Nacre-mimic Reinforced Ag@reduced Graphene Oxide-Sodium Alginate Composite Film for Wound Healing. Scientific Reports, 2017, 7, 13851.	3.3	29
27	${ m HS-\hat{l}^2-}$ cyclodextrin-functionalized Ag@Fe3O4@Ag nanoparticles as a surface-enhanced Raman spectroscopy substrate for the sensitive detection of butyl benzyl phthalate. Analytical and Bioanalytical Chemistry, 2019, 411, 5691-5701.	3.7	26
28	Clinical practice guidelines for hypertension in China: a systematic review of the methodological quality. BMJ Open, 2015, 5, e008099.	1.9	22
29	Pathobiologic implications of methylation and expression status of Runx3 and CHFR genes in gastric cancer. Medical Oncology, 2011, 28, 447-454.	2.5	21
30	Simultaneous detection of tumor-related mRNA and miRNA in cancer cells with magnetic SERS nanotags. Talanta, 2021, 232, 122432.	5.5	17
31	Elevated dopamine D2 receptor in prefrontal cortex of CUMS rats is associated with downregulated cAMP-independent signaling pathway. Canadian Journal of Physiology and Pharmacology, 2013, 91, 750-758.	1.4	16
32	A novel SERS selective detection sensor for trace trinitrotoluene based on meisenheimer complex of monoethanolamine molecule. Talanta, 2020, 218, 121157.	5.5	16
33	Electrophysiological Characterization of Photoreceptor-Like Cells in Human Inducible Pluripotent Stem Cell-Derived Retinal Organoids During in Vitro Maturation. Stem Cells, 2021, 39, 959-974.	3.2	14
34	Size-dependent surface enhanced Raman scattering activity of plasmonic AuNS@AgNCs for rapid and sensitive detection of Butyl benzyl phthalate. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 248, 119131.	3.9	12
35	Quantitative SERS sensor based on self-assembled Au@Ag heterogeneous nanocuboids monolayer with high enhancement factor for practical quantitative detection. Analytical and Bioanalytical Chemistry, 2021, 413, 4207-4215.	3.7	12
36	Intrinsically altered lungâ€resident γÎT cells control lung melanoma by producing interleukinâ€17A in the elderly. Aging Cell, 2020, 19, e13099.	6.7	10

#	Article	IF	CITATIONS
37	Systemic pharmacological verification of Baixianfeng decoction regulating TNF-PI3K-Akt-NF-κB pathway in treating rheumatoid arthritis. Bioorganic Chemistry, 2022, 119, 105519.	4.1	9
38	Promotion effects of DEHP on hepatocellular carcinoma models: up-regulation of PD-L1 by activating the JAK2/STAT3 pathway. Toxicology Research, 2021, 10, 376-388.	2.1	7
39	Promoter methylation of CHFR gene in gastric carcinoma tissues detected using two methods. Chinese Journal of Cancer, 2010, 29, 163-166.	4.9	6
40	Tuning the surface enhanced Raman spectroscopy performance of Au core-Ag shell nanostructure for label-free highly sensitive detection of colorectal cancer Marker. Journal of Alloys and Compounds, 2022, 896, 163043.	5.5	5
41	Circ-MKLN1/miR-377-3p/CTGF Axis Regulates the TGF-Î ² 2-induced Posterior Capsular Opacification in SRA01/04 Cells. Current Eye Research, 2022, 47, 372-381.	1.5	1