Thomas C R White

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8431139/publications.pdf

Version: 2024-02-01

22 papers 2,880 citations

623188 14 h-index 713013 21 g-index

22 all docs 22 docs citations

times ranked

22

2269 citing authors

#	Article	IF	CITATIONS
1	The abundance of invertebrate herbivores in relation to the availability of nitrogen in stressed food plants. Oecologia, 1984, 63, 90-105.	0.9	951
2	The Inadequate Environment. , 1993, , .		515
3	An Index to Measure Weather-Induced Stress of Trees Associated With Outbreaks of Psyllids in Australia. Ecology, 1969, 50, 905-909.	1.5	406
4	A hypothesis to explain outbreaks of looper caterpillars, with special reference to populations of Selidosema suavis in a plantation of Pinus radiata in New Zealand. Oecologia, 1974, 16, 279-301.	0.9	305
5	The role of food, weather and climate in limiting the abundance of animals. Biological Reviews, 2008, 83, 227-248.	4.7	222
6	Plant vigour versus plant stress: a false dichotomy. Oikos, 2009, 118, 807-808.	1.2	103
7	Opposing paradigms: regulation or limitation of populations?. Oikos, 2001, 93, 148-152.	1.2	86
8	When is a herbivore not a herbivore?. Oecologia, 1985, 67, 596-597.	0.9	51
9	Limitation of populations by weather-driven changes in food: a challenge to density-dependent regulation. Oikos, 2004, 105, 664-666.	1.2	42
10	The significance of unripe seeds and animal tissues in the protein nutrition of herbivores. Biological Reviews, 2011, 86, 217-224.	4.7	36
11	Senescenceâ€feeders: a new trophic subâ€guild of insect herbivores. Journal of Applied Entomology, 2015, 139, 11-22.	0.8	30
12	Are outbreaks of cambiumâ€feeding beetles generated by nutritionally enhanced phloem of droughtâ€stressed trees?. Journal of Applied Entomology, 2015, 139, 567-578.	0.8	26
13	Outbreaks of house mice in Australia: limitation by a key resource. Australian Journal of Agricultural Research, 2002, 53, 505.	1.5	24
14	Mast seeding and mammal breeding: Can a bonanza food supply be anticipated?. New Zealand Journal of Zoology, 2007, 34, 179-183.	0.6	21
15	Why do many galls have conspicuous colours? An alternative hypothesis revisited. Arthropod-Plant Interactions, 2010, 4, 149-150.	0.5	17
16	Resolving the limitation – regulation debate. Ecological Research, 2007, 22, 354-357.	0.7	12
17	Nutrient retranslocation hypothesis: a subset of the flush-feeding/senescence-feeding hypothesis. Oikos, 2003, 103, 217-217.	1.2	9
18	An alternative hypothesis explains outbreaks of coniferâ€feeding budworms of the genus <i>Choristoneura</i> (Lepidoptera: Tortricidae) in Canada. Journal of Applied Entomology, 2018, 142, 725-730.	0.8	8

#	Article	IF	CITATIONS
19	The cause of bark stripping of young plantation trees. Annals of Forest Science, 2019, 76, 1.	0.8	8
20	The universal "bottomâ€up―limitation of animal populations by their food is illustrated by outbreaking species. Ecological Research, 2019, 34, 336-338.	0.7	4
21	Lerp insect (<i>Cardiaspina densitexta</i>) outbreaks on pink gum (<i>Eucalyptus) Tj ETQq1 1 0.</i>	784314 rg 0.7	BT JOverlock
22	When insecticide spraying ceases prematurely <i>Tetranychus urticae</i> mites are not killed by predators, they wither and die <i>in situ</i> International Journal of Pest Management, 2019, 65, 161-164.	0.9	1