Tobin Filleter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8430464/publications.pdf

Version: 2024-02-01

103 papers 5,994 citations

38 h-index 75 g-index

106 all docs

 $\begin{array}{c} 106 \\ \\ \text{docs citations} \end{array}$

106 times ranked 8178 citing authors

#	Article	IF	CITATIONS
1	Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature, 2016, 537, 382-386.	27.8	1,429
2	Friction and Dissipation in Epitaxial Graphene Films. Physical Review Letters, 2009, 102, 086102.	7.8	482
3	Quantum-size-tuned heterostructures enable efficient and stable inverted perovskite solar cells. Nature Photonics, 2022, 16, 352-358.	31.4	233
4	Ultrahigh Strength and Stiffness in Crossâ€Linked Hierarchical Carbon Nanotube Bundles. Advanced Materials, 2011, 23, 2855-2860.	21.0	213
5	Local work function measurements of epitaxial graphene. Applied Physics Letters, 2008, 93, .	3.3	211
6	Enhanced Electrical and Electromagnetic Interference Shielding Properties of Polymer–Graphene Nanoplatelet Composites Fabricated via Supercritical-Fluid Treatment and Physical Foaming. ACS Applied Materials & Interfaces, 2018, 10, 30752-30761.	8.0	156
7	Structural and frictional properties of graphene films on SiC(0001) studied by atomic force microscopy. Physical Review B, 2010, 81, .	3.2	143
8	High strength measurement of monolayer graphene oxide. Carbon, 2015, 81, 497-504.	10.3	138
9	A Multiscale Study of High Performance Double-Walled Nanotubeâ^Polymer Fibers. ACS Nano, 2010, 4, 6463-6476.	14.6	120
10	Natural SEI-Inspired Dual-Protective Layers via Atomic/Molecular Layer Deposition for Long-Life Metallic Lithium Anode. Matter, 2019, 1, 1215-1231.	10.0	120
11	Fluctuations and jump dynamics in atomic friction experiments. Physical Review B, 2005, 72, .	3.2	115
12	Enhanced Thermal Conductivity of Graphene Nanoplatelet–Polymer Nanocomposites Fabricated via Supercritical Fluid-Assisted in Situ Exfoliation. ACS Applied Materials & Samp; Interfaces, 2018, 10, 1225-1236.	8.0	114
13	Fatigue of graphene. Nature Materials, 2020, 19, 405-411.	27.5	110
14	Nucleationâ€Controlled Distributed Plasticity in Pentaâ€twinned Silver Nanowires. Small, 2012, 8, 2986-2993.	10.0	101
15	Multi-scale mechanical improvement produced in carbon nanotube fibers by irradiation cross-linking. Carbon, 2013, 56, 1-11.	10.3	99
16	Multication perovskite 2D/3D interfaces form via progressive dimensional reduction. Nature Communications, 2021, 12, 3472.	12.8	89
17	Effect of Humidity and Water Intercalation on the Tribological Behavior of Graphene and Graphene Oxide. ACS Applied Materials & Interfaces, 2018, 10, 22537-22544.	8.0	84
18	In Situ TEM Electromechanical Testing of Nanowires and Nanotubes. Small, 2012, 8, 3233-3252.	10.0	79

#	Article	IF	CITATIONS
19	Ultralight Microcellular Polymer–Graphene Nanoplatelet Foams with Enhanced Dielectric Performance. ACS Applied Materials & Interfaces, 2018, 10, 19987-19998.	8.0	79
20	Nonlinear fracture toughness measurement and crack propagation resistance of functionalized graphene multilayers. Science Advances, 2018, 4, eaao7202.	10.3	72
21	Enhanced electromagnetic wave absorption performance of polymer/SiC-nanowire/MXene (Ti3C2Tx) composites. Carbon, 2021, 179, 408-416.	10.3	66
22	Interfacial Shear Strength of Multilayer Graphene Oxide Films. ACS Nano, 2016, 10, 1939-1947.	14.6	64
23	Mechanical stability of the cell nucleus: roles played by the cytoskeleton in nuclear deformation and strain recovery. Journal of Cell Science, 2018, 131, .	2.0	64
24	Strengthening in Graphene Oxide Nanosheets: Bridging the Gap between Interplanar and Intraplanar Fracture. Nano Letters, 2015, 15, 6528-6534.	9.1	61
25	Hexagonal Boron Nitride for Sulfur Corrosion Inhibition. ACS Nano, 2020, 14, 14809-14819.	14.6	56
26	Experimental-Computational Study of Shear Interactions within Double-Walled Carbon Nanotube Bundles. Nano Letters, 2012, 12, 732-742.	9.1	53
27	Conductive network formation and destruction in polypropylene/carbon nanotube composites via crystal control using supercritical carbon dioxide. Polymer, 2017, 129, 179-188.	3.8	53
28	Multiscale Experimental Mechanics of Hierarchical Carbonâ€Based Materials. Advanced Materials, 2012, 24, 2805-2823.	21.0	52
29	Microscopic Friction Studies on Metal Surfaces. Tribology Letters, 2010, 39, 19-24.	2.6	49
30	Atomistic Investigation of Load Transfer Between DWNT Bundles "Crosslinked―by PMMA Oligomers. Advanced Functional Materials, 2013, 23, 1883-1892.	14.9	48
31	Highly stretchable conductive thermoplastic vulcanizate/carbon nanotube nanocomposites with segregated structure, low percolation threshold and improved cyclic electromechanical performance. Journal of Materials Chemistry C, 2018, 6, 350-359.	5.5	48
32	Atomic structure and friction of ultrathin films of KBr on Cu(100). Physical Review B, 2008, 77, .	3.2	47
33	Effect of structure on the tribology of ultrathin graphene and graphene oxide films. Nanotechnology, 2015, 26, 135702.	2.6	46
34	Friction of Ti ₃ C ₂ T _{<i>x</i>} MXenes. Nano Letters, 2022, 22, 3356-3363.	9.1	46
35	Toughening of graphene-based polymer nanocomposites via tuning chemical functionalization. Composites Science and Technology, 2020, 194, 108140.	7.8	44
36	Electrically and thermally graded microcellular polymer/graphene nanoplatelet composite foams and their EMI shielding properties. Carbon, 2022, 187, 153-164.	10.3	42

3

#	Article	IF	Citations
37	In Situ Electron Microscopy Fourâ€Point Electromechanical Characterization of Freestanding Metallic and Semiconducting Nanowires. Small, 2014, 10, 725-733.	10.0	40
38	Effects of polymer-filler interactions on controlling the conductive network formation in polyamide 6/multi-Walled carbon nanotube composites. Polymer, 2019, 178, 121684.	3.8	40
39	Statistical shear lag model – Unraveling the size effect in hierarchical composites. Acta Biomaterialia, 2015, 18, 206-212.	8.3	39
40	Improvements in the mechanical properties of carbon nanotube fibers through graphene oxide interlocking. Carbon, 2016, 98, 291-299.	10.3	38
41	Tailoring the Mechanical and Electrochemical Properties of an Artificial Interphase for Highâ€Performance Metallic Lithium Anode. Advanced Energy Materials, 2020, 10, 2001139.	19.5	36
42	An NDT guided wave technique for the identification of corrosion defects at support locations. NDT and E International, 2015, 75, 72-79.	3.7	35
43	Atomic-scale yield and dislocation nucleation in KBr. Physical Review B, 2006, 73, .	3.2	34
44	Characterizing mechanical behavior of atomically thin films: A review. Journal of Materials Research, 2014, 29, 338-347.	2.6	34
45	Insight into the Directional Thermal Transport of Hexagonal Boron Nitride Composites. ACS Applied Materials & Samp; Interfaces, 2019, 11, 41726-41735.	8.0	33
46	Damage-tolerant 3D-printed ceramics via conformal coating. Science Advances, 2021, 7, .	10.3	32
47	Surface and Mechanical Characterization of Dental Yttria-Stabilized Tetragonal Zirconia Polycrystals (3Y-TZP) After Different Aging Processes. Microscopy and Microanalysis, 2016, 22, 1179-1188.	0.4	26
48	An Insight into the Phase Transformation of WS ₂ upon Fluorination. Advanced Materials, 2018, 30, e1803366.	21.0	26
49	Understanding the Independent and Interdependent Role of Water and Oxidation on the Tribology of Ultrathin Molybdenum Disulfide (MoS ₂). Advanced Materials Interfaces, 2019, 6, 1901246.	3.7	26
50	High Temperature Microtribological Studies of MoS2 Lubrication for Low Earth Orbit. Lubricants, 2020, 8, 49.	2.9	25
51	Atomic Friction Investigations on Ordered Superstructures. Tribology Letters, 2010, 39, 321-327.	2.6	24
52	A kelvin probe force microscopy of charged indentation-induced dislocation structures in KBr. Nanotechnology, 2009, 20, 264005.	2.6	22
53	Role of graphene in enhancing the mechanical properties of TiO ₂ /graphene heterostructures. Nanoscale, 2017, 9, 11678-11684.	5.6	22
54	Graphene fatigue through van der Waals interactions. Science Advances, 2020, 6, .	10.3	22

#	Article	IF	Citations
55	Effect of lattice stacking orientation and local thickness variation on the mechanical behavior of few layer graphene oxide. Carbon, 2018, 136, 168-175.	10.3	21
56	Corrosion Resistance of Sulfur–Selenium Alloy Coatings. Advanced Materials, 2021, 33, e2104467.	21.0	21
57	Friction of magnetene, a non–van der Waals 2D material. Science Advances, 2021, 7, eabk2041.	10.3	21
58	Nanometre-scale plasticity of Cu(100). Nanotechnology, 2007, 18, 044004.	2.6	20
59	<i>In situ</i> TEM tensile testing of carbon-linked graphene oxide nanosheets using a MEMS device. Nanotechnology, 2016, 27, 28LT01.	2.6	20
60	Asymmetry in the reciprocal epitaxy of NaCl and KBr. Physical Review B, 2007, 75, .	3.2	18
61	Evaluation of a Magnetic Dipole Model in a DC Magnetic Flux Leakage System. IEEE Transactions on Magnetics, 2019, 55, 1-7.	2.1	18
62	High Performance Space Lubrication of MoS ₂ with Tantalum. Advanced Functional Materials, 2022, 32, .	14.9	18
63	Mechanical Size Effect of Freestanding Nanoconfined Polymer Films. Macromolecules, 2022, 55, 1248-1259.	4.8	18
64	Nanomechanical elasticity and fracture studies of lithium phosphate (LPO) and lithium tantalate (LTO) solid-state electrolytes. Nanoscale, 2019, 11, 18730-18738.	5.6	17
65	A Carbon-Based Biosensing Platform for Simultaneously Measuring the Contraction and Electrophysiology of iPSC-Cardiomyocyte Monolayers. ACS Nano, 2022, 16, 11278-11290.	14.6	15
66	Fatigue resistance of atomically thin graphene oxide. Carbon, 2021, 183, 780-788.	10.3	14
67	Interpretation of atomic friction experiments based on atomistic simulations. Journal of Vacuum Science & Technology B, 2007, 25, 1547.	1.3	13
68	Inherent carbonaceous impurities on arc-discharge multiwalled carbon nanotubes and their implications for nanoscale interfaces. Carbon, 2014, 80, 1-11.	10.3	13
69	Structureâ€Dependent Wear and Shear Mechanics of Nanostructured MoS ₂ Coatings. Advanced Materials Interfaces, 2020, 7, 1901870.	3.7	13
70	Influence of different design parameters on a coplanar capacitive sensor performance. NDT and E International, 2022, 126, 102588.	3.7	12
71	Optimization of Periodic Permanent Magnet Configuration in Lorentz-Force EMATs. Research in Nondestructive Evaluation, 2018, 29, 95-108.	1.1	11
72	Investigating the detection limit of subsurface holes under graphite with atomic force acoustic microscopy. Nanoscale, 2019, 11, 10961-10967.	5.6	11

#	Article	IF	CITATIONS
73	Low energy proton irradiation tolerance of molybdenum disulfide lubricants. Applied Surface Science, 2021, 567, 150677.	6.1	10
74	Gasâ€Phase Fluorination of Hexagonal Boron Nitride. Advanced Materials, 2021, 33, e2106084.	21.0	10
75	Fracture and Fatigue of Al2O3-Graphene Nanolayers. Nano Letters, 2021, 21, 437-444.	9.1	9
76	Experimental Analysis of Friction and Wear of Self-Lubricating Composites Used for Dry Lubrication of Ball Bearing for Space Applications. Lubricants, 2021, 9, 38.	2.9	8
77	Interfacial Interactions and Tribological Behavior of Metal-Oxide/2D-Material Contacts. Tribology Letters, 2021, 69, 1.	2.6	8
78	Role of chemical vs. physical interfacial interaction and adsorbed water on the tribology of ultrathin 2D-material/steel interfaces. Tribology International, 2021, 163, 107194.	5.9	8
79	Local strain mapping of GO nanosheets under in situ TEM tensile testing. Applied Materials Today, 2019, 14, 102-107.	4.3	6
80	Mechanical characterization of thin films using a MEMS device inside SEM., 2015, , .		5
81	Work of Adhesion Measurements of MoS ₂ Dry Lubricated 440C Stainless Steel Tribological Contacts. Advanced Engineering Materials, 2017, 19, 1700423.	3.5	5
82	Mechanical Characterization of Graphene. , 2014, , 121-135.		5
83	Scalable Characterization of 2D Gallium-Intercalated Epitaxial Graphene. ACS Applied Materials & Samp; Interfaces, 2021, 13, 55428-55439.	8.0	5
84	Multi-Electrode Coplanar Capacitive Probe With Various Arrangements for Non-Destructive Testing of Materials. IEEE Sensors Journal, 2022, 22, 8134-8146.	4.7	5
85	Mechanical reliability of monolayer MoS2 and WSe2. Matter, 2022, 5, 2975-2989.	10.0	5
86	Static and dynamic calibration of torsional spring constants of cantilevers. Review of Scientific Instruments, 2018, 89, 093701.	1.3	4
87	Numerical Simulation and Experimental Study of Capacitive Imaging Technique as a Nondestructive Testing Method. Applied Sciences (Switzerland), 2021, 11, 3804.	2.5	4
88	Influence of Magnetostriction Induced by the Periodic Permanent Magnet Electromagnetic Acoustic Transducer (PPM EMAT) on Steel. Sensors, 2021, 21, 7700.	3.8	4
89	Nano-meter scale plasticity in KBr studied by nanoindenter and force microscopy. Materials Research Society Symposia Proceedings, 2009, 1185, 90.	0.1	3
90	Enhanced sensitivity of nanoscale subsurface imaging by photothermal excitation in atomic force microscopy. Review of Scientific Instruments, 2020, 91, 063703.	1.3	3

#	Article	IF	CITATIONS
91	Clean manufacturing of nanocellulose-reinforced hydrophobic flexible substrates. Journal of Cleaner Production, 2021, 293, 126141.	9.3	2
92	Divisions in a Fibrillar Adhesive Increase the Adhesive Strength. ACS Applied Materials & Samp; Interfaces, 2021, 13, 59478-59486.	8.0	2
93	Coplanar Capacitive Sensing as a New Electromagnetic Technique for Non-Destructive Evaluation. , 2021, , .		2
94	Enhancement of Defect Characterization With AC Magnetic Flux Leakage: Far-Side Defect Shape Estimation and Sensor Lift-Off Compensation. IEEE Transactions on Magnetics, 2022, 58, 1-11.	2.1	2
95	Thermally conductive polymer-graphene nanoplatelet composite foams. AIP Conference Proceedings, 2019, , .	0.4	1
96	Carbon Nanotubes: Atomistic Investigation of Load Transfer Between DWNT Bundles "Crosslinked―by PMMA Oligomers (Adv. Funct. Mater. 15/2013). Advanced Functional Materials, 2013, 23, 1976-1976.	14.9	0
97	Reference Specimen for Nondestructive Evaluation: Characterization of the Oxide Layer of a Cold Shot in Inconel 600. Journal of Materials Engineering and Performance, 2015, 24, 875-884.	2.5	0
98	Nanoscale Mechanical Characterization of 1D and 2D Materials with Application to Nanocomposites. , 2016, , 77-95.		0
99	A MEMS device for fracture toughness measurement of 2D nano films under TEM imaging. , 2017, , .		0
100	In Situ Transmission Electron Microscopy: Mechanical Testing. , 2015, , 1-12.		0
101	In Situ Transmission Electron Microscopy: Mechanical Testing. , 2016, , 1543-1554.		0
102	Sectorization of Macromolecular Single Crystals Unveiled by Probing Shear Anisotropy. ACS Macro Letters, 2022, 11, 53-59.	4.8	0
103	High Performance Space Lubrication of MoS ₂ with Tantalum (Adv. Funct. Mater. 20/2022). Advanced Functional Materials, 2022, 32, .	14.9	O