José Luis De La Pompa MÃ-nguez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/843004/publications.pdf

Version: 2024-02-01

		34105	37204
100	17,264	52	96
papers	citations	h-index	g-index
111	111	111	20009
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Bmp2 overexpression effects over appendicular skeleton development. Bone Reports, 2022, 16, 101350.	0.4	Ο
2	Midkine-a Regulates the Formation of a Fibrotic Scar During Zebrafish Heart Regeneration. Frontiers in Cell and Developmental Biology, 2021, 9, 669439.	3.7	6
3	Heterotopic ossification in mice overexpressing Bmp2 in Tie2+ lineages. Cell Death and Disease, 2021, 12, 729.	6.3	8
4	Clinical Risk Prediction in Patients With Left Ventricular MyocardialÂNoncompaction. Journal of the American College of Cardiology, 2021, 78, 643-662.	2.8	40
5	DACH1-Driven Arterialization: Angiogenic Therapy for Ischemic Heart Disease?. Circulation Research, 2021, 129, 717-719.	4.5	2
6	Fibrous Caps in Atherosclerosis Form by Notch-Dependent Mechanisms Common to Arterial Media Development. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, e427-e439.	2.4	18
7	Adhesion G protein–coupled receptor Gpr126/Adgrg6 is essential for placental development. Science Advances, 2021, 7, eabj5445.	10.3	17
8	Trabeculated Myocardium in Hypertrophic Cardiomyopathy: Clinical Consequences. Journal of Clinical Medicine, 2020, 9, 3171.	2.4	5
9	Association Between Left Ventricular Noncompaction and Vigorous Physical Activity. Journal of the American College of Cardiology, 2020, 76, 1723-1733.	2.8	34
10	Loss of Caveolin-1 and caveolae leads to increased cardiac cell stiffness and functional decline of the adult zebrafish heart. Scientific Reports, 2020, 10, 12816.	3.3	12
11	Identification of a peripheral blood gene signature predicting aortic valve calcification. Physiological Genomics, 2020, 52, 563-574.	2.3	11
12	Notch and Bmp signaling pathways act coordinately during the formation of the proepicardium. Developmental Dynamics, 2020, 249, 1455-1469.	1.8	8
13	NOTCH Activation Promotes Valve Formation by Regulating the Endocardial Secretome. Molecular and Cellular Proteomics, 2019, 18, 1782-1795.	3.8	18
14	Actin dynamics and the Bmp pathway drive apical extrusion of proepicardial cells. Development (Cambridge), 2019, 146, .	2.5	16
15	Human pre-valvular endocardial cells derived from pluripotent stem cells recapitulate cardiac pathophysiological valvulogenesis. Nature Communications, 2019, 10, 1929.	12.8	60
16	Coronary arterial development is regulated by a Dll4-Jag1-EphrinB2 signaling cascade. ELife, 2019, 8, .	6.0	27
17	Myocardial Bmp2 gain causes ectopic EMT and promotes cardiomyocyte proliferation and immaturity. Cell Death and Disease, 2018, 9, 399.	6.3	24
18	Myocardial Notch1-Rbpj deletion does not affect NOTCH signaling, heart development or function. PLoS ONE, 2018, 13, e0203100.	2.5	11

4

#	Article	IF	CITATIONS
19	Notch and interacting signalling pathways in cardiac development, disease, and regeneration. Nature Reviews Cardiology, 2018, 15, 685-704.	13.7	173
20	Bmp2 and Notch cooperate to pattern the embryonic endocardium. Development (Cambridge), 2018, 145,	2.5	30
21	A novel source of arterial valve cells linked to bicuspid aortic valve without raphe in mice. ELife, 2018, 7, .	6.0	979
22	Dynamic regulation of Notch1 activation and Notch ligand expression in human thymus development. Development (Cambridge), 2018, 145, .	2.5	46
23	Control of cardiac jelly dynamics by NOTCH1 and NRG1 defines the building plan for trabeculation. Nature, 2018, 557, 439-445.	27.8	144
24	Notch signalling restricts inflammation and <i>serpine1</i> in the dynamic endocardium of the regenerating zebrafish heart. Development (Cambridge), 2017, 144, 1425-1440.	2.5	91
25	Marginal zone B cells control the response of follicular helper T cells to a high-cholesterol diet. Nature Medicine, 2017, 23, 601-610.	30.7	114
26	Mesenchymal Stem Cell Migration and Proliferation Are Mediated by Hypoxia-Inducible Factor-1α Upstream of Notch and SUMO Pathways. Stem Cells and Development, 2017, 26, 973-985.	2.1	59
27	Deletion of Fstl1 (Follistatin-Like 1) From the Endocardial/Endothelial Lineage Causes Mitral Valve Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, e116-e130.	2.4	24
28	Notch signalling in ventricular chamber development and cardiomyopathy. FEBS Journal, 2016, 283, 4223-4237.	4.7	67
29	Sequential Ligand-Dependent Notch Signaling Activation Regulates Valve Primordium Formation and Morphogenesis. Circulation Research, 2016, 118, 1480-1497.	4.5	85
30	The Chromatin Remodeling Complex Chd4/NuRD Controls Striated Muscle Identity and Metabolic Homeostasis. Cell Metabolism, 2016, 23, 881-892.	16.2	68
31	Endothelial Jag1-RBPJ signalling promotes inflammatory leucocyte recruitment and atherosclerosis. Cardiovascular Research, 2016, 112, 568-580.	3.8	49
32	Morphogenesis of myocardial trabeculae in the mouse embryo. Journal of Anatomy, 2016, 229, 314-325.	1.5	50
33	Endocardial Notch Signaling in Cardiac Development and Disease. Circulation Research, 2016, 118, e1-e18.	4.5	179
34	Sequential Notch activation regulates ventricular chamber development. Nature Cell Biology, 2016, 18, 7-20.	10.3	156
35	Congenital coronary artery anomalies: a bridge from embryology to anatomy and pathophysiology—a position statement of the development, anatomy, and pathology ESC Working Group. Cardiovascular Research, 2016, 109, 204-216.	3.8	143

Intercellular Signaling in Cardiac Development and Disease: The NOTCH pathway. , 2016, , 103-114.

#	Article	IF	CITATIONS
37	NOTCH pathway inactivation promotes bladder cancer progression. Journal of Clinical Investigation, 2015, 125, 824-830.	8.2	86
38	<scp><i>M</i></scp> <i>sx1^{cre}</i> <scp><i>^{ERT}</i></scp> <i>²</i> knockâ€In allele: A useful tool to target embryonic and adult cardiac valves. Genesis, 2015, 53, 337-345.	1.6	9
39	Notch1 regulates progenitor cell proliferation and differentiation during mouse yolk sac hematopoiesis. Cell Death and Differentiation, 2014, 21, 1081-1094.	11.2	10
40	Hand2 Is an Essential Regulator for Two Notch-Dependent Functions within the Embryonic Endocardium. Cell Reports, 2014, 9, 2071-2083.	6.4	57
41	Genetic and functional genomics approaches targeting the Notch pathway in cardiac development and congenital heart disease. Briefings in Functional Genomics, 2014, 13, 15-27.	2.7	10
42	How to Make a Heart Valve: From Embryonic Development to Bioengineering of Living Valve Substitutes. Cold Spring Harbor Perspectives in Medicine, 2014, 4, a013912-a013912.	6.2	63
43	Left Ventricular Noncompaction. Journal of the American College of Cardiology, 2014, 64, 1981-1983.	2.8	34
44	<i>Arid3b</i> is essential for second heart field cell deployment and heart patterning. Development (Cambridge), 2014, 141, 4168-4181.	2.5	10
45	Notch and Hippo Converge on Cdx2 to Specify the Trophectoderm Lineage in the Mouse Blastocyst. Developmental Cell, 2014, 30, 410-422.	7.0	189
46	Bâ€Embryogenesis of Ventricular Myocardial Trabeculae – Novel Insights from Episcopic 3D Imaging and Fractal Analysis of Wild-type and Notch MIB1 Noncompaction Mouse Models. Heart, 2014, 100, A125-A128.	2.9	1
47	Epithelial to mesenchymal transition—The roles of cell morphology, labile adhesion and junctional coupling. Computer Methods and Programs in Biomedicine, 2013, 111, 435-446.	4.7	15
48	Notch activation stimulates migration of breast cancer cells and promotes tumor growth. Breast Cancer Research, 2013, 15, R54.	5.0	106
49	Epithelialâ€ŧoâ€mesenchymal transition in epicardium is independent of snail1. Genesis, 2013, 51, 32-40.	1.6	23
50	Mutations in the NOTCH pathway regulator MIB1 cause left ventricular noncompaction cardiomyopathy. Nature Medicine, 2013, 19, 193-201.	30.7	296
51	Notch regulates blastema proliferation and prevents differentiation during adult zebrafish fin regeneration. Development (Cambridge), 2013, 140, 1402-1411.	2.5	76
52	The non-canonical NOTCH ligand DLK1 exhibits a novel vascular role as a strong inhibitor of angiogenesis. Cardiovascular Research, 2012, 93, 232-241.	3.8	65
53	Ablation of Dido3 compromises lineage commitment of stem cells in vitro and during early embryonic development. Cell Death and Differentiation, 2012, 19, 132-143.	11.2	23
54	Coordinating Tissue Interactions: Notch Signaling in Cardiac Development and Disease. Developmental Cell, 2012, 22, 244-254.	7.0	229

#	Article	IF	CITATIONS
55	Notch signaling in cardiac valve development and disease. Birth Defects Research Part A: Clinical and Molecular Teratology, 2011, 91, 449-459.	1.6	63
56	Signaling During Epicardium and Coronary Vessel Development. Circulation Research, 2011, 109, 1429-1442.	4.5	122
57	Diet-Induced Aortic Valve Disease in Mice Haploinsufficient for the Notch Pathway Effector RBPJK/CSL. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 1580-1588.	2.4	83
58	Differential Notch Signaling in the Epicardium Is Required for Cardiac Inflow Development and Coronary Vessel Morphogenesis. Circulation Research, 2011, 108, 824-836.	4.5	149
59	Signaling Pathways in Valve Formation. , 2010, , 389-413.		1
60	Notch Signaling in Cardiac Development and Disease. Current Topics in Developmental Biology, 2010, 92, 333-365.	2.2	74
61	Integration of a Notch-dependent mesenchymal gene program and Bmp2-driven cell invasiveness regulates murine cardiac valve formation. Journal of Clinical Investigation, 2010, 120, 3493-3507.	8.2	201
62	Notch Is a Critical Component of the Mouse Somitogenesis Oscillator and Is Essential for the Formation of the Somites. PLoS Genetics, 2009, 5, e1000662.	3.5	97
63	CSL–MAML-dependent Notch1 signaling controls T lineage–specific IL-7Rα gene expression in early human thymopoiesis and leukemia. Journal of Experimental Medicine, 2009, 206, 779-791.	8.5	145
64	Notch Signaling in Cardiac Development and Disease. Pediatric Cardiology, 2009, 30, 643-650.	1.3	44
65	Notch Signaling Is Essential for Ventricular Chamber Development. Developmental Cell, 2007, 12, 415-429.	7.0	422
66	Notch Signaling in Development and Cancer. Endocrine Reviews, 2007, 28, 339-363.	20.1	474
67	Monitoring Notch1 activity in development: Evidence for a feedback regulatory loop. Developmental Dynamics, 2007, 236, 2594-2614.	1.8	133
68	The notch pathway positively regulates programmed cell death during erythroid differentiation. Leukemia, 2007, 21, 1496-1503.	7.2	41
69	Notch Signaling Requires GATA-2 to Inhibit Myelopoiesis from Embryonic Stem Cells and Primary Hemopoietic Progenitors. Journal of Immunology, 2006, 176, 5267-5275.	0.8	59
70	RBPjκ-dependent Notch function regulates <i>Gata2</i> and is essential for the formation of intra-embryonic hematopoietic cells. Development (Cambridge), 2005, 132, 1117-1126.	2.5	241
71	Notch and Epithelial-Mesenchyme Transition in Development and Tumor Progression: Another Turn of the Screw. Cell Cycle, 2004, 3, 716-719.	2.6	91
72	Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation. Genes and Development, 2004, 18, 99-115.	5.9	820

#	Article	IF	CITATIONS
73	Notch and epithelial-mesenchyme transition in development and tumor progression: another turn of the screw. Cell Cycle, 2004, 3, 718-21.	2.6	48
74	Notch activity induces Nodal expression and mediates the establishment of left-right asymmetry in vertebrate embryos. Genes and Development, 2003, 17, 1213-1218.	5.9	171
75	Localized and Transient Transcription of Hox Genes Suggests a Link between Patterning and the Segmentation Clock. Cell, 2001, 106, 207-217.	28.9	192
76	p53 Accumulation, defective cell proliferation, and early embryonic lethality in mice lacking tsg101. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 1859-1864.	7.1	136
77	Interaction between Notch signalling and Lunatic fringe during somite boundary formation in the mouse. Current Biology, 1999, 9, 470-480.	3.9	230
78	Developmental studies of Brca1 and Brca2 knock-out mice. Journal of Mammary Gland Biology and Neoplasia, 1998, 3, 431-445.	2.7	73
79	Role of the NF-ATc transcription factor in morphogenesis of cardiac valves and septum. Nature, 1998, 392, 182-186.	27.8	599
80	High cancer susceptibility and embryonic lethality associated with mutation of the PTEN tumor suppressor gene in mice. Current Biology, 1998, 8, 1169-1178.	3.9	758
81	neurogenin1 Is Essential for the Determination of Neuronal Precursors for Proximal Cranial Sensory Ganglia. Neuron, 1998, 20, 469-482.	8.1	721
82	Differential Requirement for Caspase 9 in Apoptotic Pathways In Vivo. Cell, 1998, 94, 339-352.	28.9	1,224
83	Negative Regulation of PKB/Akt-Dependent Cell Survival by the Tumor Suppressor PTEN. Cell, 1998, 95, 29-39.	28.9	2,269
84	FADD: Essential for Embryo Development and Signaling from Some, But Not All, Inducers of Apoptosis. Science, 1998, 279, 1954-1958.	12.6	852
85	The tumor suppressor gene <i>Smad4/Dpc4</i> is required for gastrulation and later for anterior development of the mouse embryo. Genes and Development, 1998, 12, 107-119.	5.9	448
86	Brca2 is required for embryonic cellular proliferation in the mouse Genes and Development, 1997, 11, 1242-1252.	5.9	255
87	Early Lethality, Functional NF-κB Activation, and Increased Sensitivity to TNF-Induced Cell Death in TRAF2-Deficient Mice. Immunity, 1997, 7, 715-725.	14.3	778
88	Partial rescue of Brca15–6 early embryonic lethality by p53 or p21 null mutation. Nature Genetics, 1997, 16, 298-302.	21.4	237
89	The Tumor Suppressor Gene Brca1 Is Required for Embryonic Cellular Proliferation in the Mouse. Cell, 1996, 85, 1009-1023.	28.9	647
90	Limb deformity proteins during avian neurulation and sense organ development. Developmental Dynamics, 1995, 204, 156-167.	1.8	16

6

#	Article	IF	CITATIONS
91	Functional relationships between genes of the Shaker gene complex of Drosophila. Molecular Genetics and Genomics, 1994, 244, 197-204.	2.4	1
92	Functional interactions between the gene tetanic and the Shaker gene complex of Drosophila. Molecular Genetics and Genomics, 1994, 244, 205-215.	2.4	1
93	Ectopic expression of genes during chicken limb pattern formation using replication defective retroviral vectors. Mechanisms of Development, 1993, 43, 187-198.	1.7	16
94	The chicken limb deformity gene encodes nuclear proteins expressed in specific cell types during morphogenesis Genes and Development, 1992, 6, 14-28.	5.9	61
95	Involvement of the interleukin 4 pathway in the generation of functional gamma delta T cells from human pro-T cells Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 7689-7693.	7.1	20
96	Troponin I is encoded in the haplolethal region of the Shaker gene complex of Drosophila Genes and Development, 1991, 5, 132-140.	5.9	55
97	The original sin of T cells: Constitutive activation of the IL-2/IL-2R pathway early in intrathymic development. Research in Immunology, 1990, 141, 298-303.	0.9	2
98	Genetic analysis of the Shaker gene complex of Drosophila melanogaster Genetics, 1990, 125, 383-398.	2.9	53
99	The thousand and one ways of being a T cell. Thymus, 1990, 16, 173-85.	0.5	2
100	Genetic analysis of muscle development in Drosophila melanogaster. Developmental Biology, 1989, 131, 439-454.	2.0	58