
Margus Varjak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8430003/publications.pdf Version: 2024-02-01

Μαράιις Παριακ

#	Article	IF	CITATIONS
1	Mutational analysis of Aedes aegypti Dicer 2 provides insights into the biogenesis of antiviral exogenous small interfering RNAs. PLoS Pathogens, 2022, 18, e1010202.	2.1	6
2	Mosquito saliva enhances virus infection through sialokinin-dependent vascular leakage. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	16
3	A plasmid DNA-launched SARS-CoV-2 reverse genetics system and coronavirus toolkit for COVID-19 research. PLoS Biology, 2021, 19, e3001091.	2.6	163
4	Analysis of Zika virus capsid-Aedes aegypti mosquito interactome reveals pro-viral host factors critical for establishing infection. Nature Communications, 2021, 12, 2766.	5.8	19
5	An Aedes aegypti-Derived Ago2 Knockout Cell Line to Investigate Arbovirus Infections. Viruses, 2021, 13, 1066.	1.5	10
6	Sugar feeding protects against arboviral infection by enhancing gut immunity in the mosquito vector Aedes aegypti. PLoS Pathogens, 2021, 17, e1009870.	2.1	23
7	A prenylated dsRNA sensor protects against severe COVID-19. Science, 2021, 374, eabj3624.	6.0	124
8	Generation of a reporter yellow fever virus for high throughput antiviral assays. Antiviral Research, 2020, 183, 104939.	1.9	14
9	aBravo Is a Novel Aedes aegypti Antiviral Protein That Interacts with, but Acts Independently of, the Exogenous siRNA Pathway Effector Dicer 2. Viruses, 2020, 12, 748.	1.5	5
10	Glucose-Regulated Protein 78 Interacts with Zika Virus Envelope Protein and Contributes to a Productive Infection. Viruses, 2020, 12, 524.	1.5	14
11	The Aedes aegypti Domino Ortholog p400 Regulates Antiviral Exogenous Small Interfering RNA Pathway Activity and <i>ago-2</i> Expression. MSphere, 2020, 5, .	1.3	12
12	Pan-viral protection against arboviruses by activating skin macrophages at the inoculation site. Science Translational Medicine, 2020, 12, .	5.8	25
13	Antiviral RNA Interference Activity in Cells of the Predatory Mosquito, Toxorhynchites amboinensis. Viruses, 2018, 10, 694.	1.5	7
14	Spindle-E Acts Antivirally Against Alphaviruses in Mosquito Cells. Viruses, 2018, 10, 88.	1.5	29
15	Mutation of CD2AP and SH3KBP1 Binding Motif in Alphavirus nsP3 Hypervariable Domain Results in Attenuated Virus. Viruses, 2018, 10, 226.	1.5	37
16	The antiviral piRNA response in mosquitoes?. Journal of General Virology, 2018, 99, 1551-1562.	1.3	38
17	Aedes aegypti Piwi4 Is a Noncanonical PIWI Protein Involved in Antiviral Responses. MSphere, 2017, 2, .	1.3	92
18	Differential effects of lipid biosynthesis inhibitors on Zika and Semliki Forest viruses. Veterinary Journal, 2017, 230, 62-64.	0.6	8

Margus Varjak

#	Article	IF	CITATIONS
19	Characterization of the Zika virus induced small RNA response in Aedes aegypti cells. PLoS Neglected Tropical Diseases, 2017, 11, e0006010.	1.3	76
20	Wolbachia Blocks Viral Genome Replication Early in Infection without a Transcriptional Response by the Endosymbiont or Host Small RNA Pathways. PLoS Pathogens, 2016, 12, e1005536.	2.1	79
21	A human genome-wide loss-of-function screen identifies effective chikungunya antiviral drugs. Nature Communications, 2016, 7, 11320.	5.8	72
22	Full Genome Sequence and sfRNA Interferon Antagonist Activity of Zika Virus from Recife, Brazil. PLoS Neglected Tropical Diseases, 2016, 10, e0005048.	1.3	193
23	Magnetic Fractionation and Proteomic Dissection of Cellular Organelles Occupied by the Late Replication Complexes of Semliki Forest Virus. Journal of Virology, 2013, 87, 10295-10312.	1.5	52
24	Phenoloxidase Activity Acts as a Mosquito Innate Immune Response against Infection with Semliki Forest Virus. PLoS Pathogens, 2012, 8, e1002977.	2.1	119
25	Sequestration of G3BP coupled with efficient translation inhibits stress granules in Semliki Forest virus infection. Molecular Biology of the Cell, 2012, 23, 4701-4712.	0.9	148
26	Inhibitors of Alphavirus Entry and Replication Identified with a Stable Chikungunya Replicon Cell Line and Virus-Based Assays. PLoS ONE, 2011, 6, e28923.	1.1	219
27	Novel Functions of the Alphavirus Nonstructural Protein nsP3 C-Terminal Region. Journal of Virology, 2010, 84, 2352-2364.	1.5	38