Tamar Juven-Gershon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8429528/publications.pdf

Version: 2024-02-01

36 papers 3,960 citations

304602 22 h-index 330025 37 g-index

40 all docs 40 docs citations

times ranked

40

4338 citing authors

#	Article	IF	CITATIONS
1	Rapid Biosensing Method for Detecting Protein–DNA Interactions. ACS Sensors, 2022, 7, 60-70.	4.0	5
2	Computational identification and experimental characterization of preferred downstream positions in human core promoters. PLoS Computational Biology, 2021, 17, e1009256.	1.5	2
3	The Core Promoter Is a Regulatory Hub for Developmental Gene Expression. Frontiers in Cell and Developmental Biology, 2021, 9, 666508.	1.8	12
4	Changing and stable chromatin accessibility supports transcriptional overhaul during neural stem cell activation and is altered with age. Aging Cell, 2021, 20, e13499.	3.0	13
5	Efficient In Vivo Introduction of Point Mutations Using ssODN and a Co-CRISPR Approach. Biological Procedures Online, 2020, 22, 14.	1.4	15
6	Quantitative Analysis of Differential Expression of HOX Genes in Multiple Cancers. Cancers, 2020, 12, 1572.	1.7	4
7	Integration of multiple epigenomic marks improves prediction of variant impact in saturation mutagenesis reporter assay. Human Mutation, 2019, 40, 1280-1291.	1.1	46
8	Identification of evolutionarily conserved downstream core promoter elements required for the transcriptional regulation of Fushi tarazu target genes. PLoS ONE, 2019, 14, e0215695.	1.1	11
9	Structural and Dynamics Characterization of the MerR Family Metalloregulator CueR in its Repression and Activation States. Structure, 2017, 25, 988-996.e3.	1.6	38
10	Functional Screening of Core Promoter Activity. Methods in Molecular Biology, 2017, 1651, 77-91.	0.4	2
11	SELMAP - SELEX affinity landscape MAPping of transcription factor binding sites using integrated microfluidics. Scientific Reports, 2016, 6, 33351.	1.6	17
12	Engineered Promoters for Potent Transient Overexpression. PLoS ONE, 2016, 11, e0148918.	1.1	29
13	TRF2: TRansForming the view of general transcription factors. Transcription, 2015, 6, 1-6.	1.7	19
14	The core promoter: At the heart of gene expression. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2015, 1849, 1116-1131.	0.9	140
15	ElemeNT: a computational tool for detecting core promoter elements. Transcription, 2015, 6, 41-50.	1.7	66
16	Structure-Function Analysis of the Drosophila melanogaster Caudal Transcription Factor Provides Insights into Core Promoter-preferential Activation. Journal of Biological Chemistry, 2015, 290, 17293-17305.	1.6	13
17	The core promoter composition establishes a new dimension in developmental gene networks. Nucleus, 2014, 5, 298-303.	0.6	11
18	Core Promoter Functions in the Regulation of Gene Expression of Drosophila Dorsal Target Genes. Journal of Biological Chemistry, 2014, 289, 11993-12004.	1.6	28

#	Article	IF	CITATIONS
19	<i>Drosophila</i> TRF2 is a preferential core promoter regulator. Genes and Development, 2014, 28, 2163-2174.	2.7	45
20	The FOXO Transcription Factor DAF-16 Bypasses ire-1 Requirement to Promote Endoplasmic Reticulum Homeostasis. Cell Metabolism, 2014, 20, 870-881.	7.2	26
21	Human TFIID Binds to Core Promoter DNA in a Reorganized Structural State. Cell, 2013, 152, 120-131.	13.5	110
22	Regulation of gene expression via the core promoter and the basal transcriptional machinery. Developmental Biology, 2010, 339, 225-229.	0.9	409
23	The RNA polymerase II core promoter — the gateway to transcription. Current Opinion in Cell Biology, 2008, 20, 253-259.	2.6	319
24	Caudal, a key developmental regulator, is a DPE-specific transcriptional factor. Genes and Development, 2008, 22, 2823-2830.	2.7	87
25	TBP, Mot1, and NC2 establish a regulatory circuit that controls DPE-dependent versus TATA-dependent transcription. Genes and Development, 2008, 22, 2353-2358.	2.7	64
26	Perspectives on the RNA polymerase II core promoter. Biochemical Society Transactions, 2006, 34, 1047-1050.	1.6	69
27	Rational design of a super core promoter that enhances gene expression. Nature Methods, 2006, 3, 917-922.	9.0	179
28	Siah-1 binds and regulates the function of Numb. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 15067-15072.	3.3	85
29	Mdm2: The Ups and Downs. Molecular Medicine, 1999, 5, 71-83.	1.9	176
30	Critical role for Ser20 of human p53 in the negative regulation of p53 by Mdm2. EMBO Journal, 1999, 18, 1805-1814.	3.5	321
31	The c- <i>fos</i> Proto-Oncogene Is a Target for Transactivation by the p53 Tumor Suppressor. Molecular and Cellular Biology, 1999, 19, 2594-2600.	1.1	58
32	The Mdm2 Oncoprotein Interacts with the Cell Fate Regulator Numb. Molecular and Cellular Biology, 1998, 18, 3974-3982.	1.1	129
33	Regulation of mdm2 expression by p53: alternative promoters produce transcripts with nonidentical translation potential Genes and Development, 1994, 8, 1739-1749.	2.7	281
34	Antibodies to different isoforms of the heavy neurofilament protein (NF-H) in normal aging and Alzheimer's disease. Molecular Neurobiology, 1994, 9, 83-91.	1.9	27
35	Targets for Transcriptional Activation by Wild-type p53: Endogenous Retroviral LTR, Immunoglobulin-like Promoter, and an Internal Promoter of the mdm2 Gene. Cold Spring Harbor Symposia on Quantitative Biology, 1994, 59, 225-235.	2.0	8
36	mdm2 expression is induced by wild type p53 activity EMBO Journal, 1993, 12, 461-468.	3.5	1,086