
João Paulo Capela

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8429327/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Four decades of chemotherapy-induced cognitive dysfunction: comprehensive review of clinical, animal and in vitro studies, and insights of key initiating events. Archives of Toxicology, 2022, 96, 11-78.	4.2	9
2	Chemobrain: mitoxantrone-induced oxidative stress, apoptotic and autophagic neuronal death in adult CD-1 mice. Archives of Toxicology, 2022, 96, 1767-1782.	4.2	6
3	A review on the mitochondrial toxicity of "ecstasy―(3,4-methylenedioxymethamphetamine, MDMA). Current Research in Toxicology, 2022, 3, 100075.	2.7	4
4	An updated review on synthetic cathinones. Archives of Toxicology, 2021, 95, 2895-2940.	4.2	59
5	Mitoxantrone impairs proteasome activity and prompts early energetic and proteomic changes in HL-1 cardiomyocytes at clinically relevant concentrations. Archives of Toxicology, 2020, 94, 4067-4084.	4.2	9
6	Adverse outcome pathways induced by 3,4-dimethylmethcathinone and 4-methylmethcathinone in differentiated human SH-SY5Y neuronal cells. Archives of Toxicology, 2020, 94, 2481-2503.	4.2	8
7	Structure-cytotoxicity relationship profile of 13 synthetic cathinones in differentiated human SH-SY5Y neuronal cells. NeuroToxicology, 2019, 75, 158-173.	3.0	25
8	Methylphenidate clinically oral doses improved brain and heart glutathione redox status and evoked renal and cardiac tissue injury in rats. Biomedicine and Pharmacotherapy, 2018, 100, 551-563.	5.6	9
9	Clorgyline and N-acetyl-L-cysteine provide partial protection against the toxicity of synthetic cathinones and methamphetamine on SH-SY5Y humans cells. Toxicology Letters, 2018, 295, S274.	0.8	1
10	Mitoxantrone is More Toxic than Doxorubicin in SH-SY5Y Human Cells: A â€~Chemobrain' In Vitro Study. Pharmaceuticals, 2018, 11, 41.	3.8	13
11	Aged rats are more vulnerable than adolescents to "ecstasy―induced toxicity. Archives of Toxicology, 2018, 92, 2275-2295.	4.2	9
12	Toxicity of the amphetamine metabolites 4-hydroxyamphetamine and 4-hydroxynorephedrine in human dopaminergic differentiated SH-SY5Y cells. Toxicology Letters, 2017, 269, 65-76.	0.8	13
13	Methylphenidate effects in the young brain: friend or foe?. International Journal of Developmental Neuroscience, 2017, 60, 34-47.	1.6	22
14	Mitochondrial Trails in the Neurotoxic Mechanisms of MDMA. , 2016, , 431-444.		0
15	"Ecstasy―toxicity to adolescent rats following an acute low binge dose. BMC Pharmacology & Toxicology, 2016, 17, 28.	2.4	10
16	Neurotoxicity of amphetamine and its metabolite 4-hydroxynorephedrine on differentiated SH-SY5Y dopaminergic cells. Toxicology Letters, 2015, 238, S358.	0.8	1
17	In vitro models for neurotoxicology research. Toxicology Research, 2015, 4, 801-842.	2.1	36
18	Mitochondria: key players in the neurotoxic effects of amphetamines. Archives of Toxicology, 2015, 89, 1695-1725.	4.2	61

JOãO PAULO CAPELA

#	Article	IF	CITATIONS
19	The neurotoxicity of amphetamines during the adolescent period. International Journal of Developmental Neuroscience, 2015, 41, 44-62.	1.6	66
20	Inhibition of NF-kB Activation and Cytokines Production in THP-1 Monocytes by 2-Styrylchromones. Medicinal Chemistry, 2015, 11, 560-566.	1.5	15
21	Ecstasy. , 2014, , 1064-1067.		1
22	MDMA impairs mitochondrial neuronal trafficking in a Tau- and Mitofusin2/Drp1-dependent manner. Archives of Toxicology, 2014, 88, 1561-1572.	4.2	18
23	"Ecstasy"-induced toxicity in SH-SY5Y differentiated cells: role of hyperthermia and metabolites. Archives of Toxicology, 2014, 88, 515-531.	4.2	29
24	The mixture of "ecstasy―and its metabolites is toxic to human SH-SY5Y differentiated cells at in vivo relevant concentrations. Archives of Toxicology, 2014, 88, 455-473.	4.2	45
25	Modeling chronic brain exposure to amphetamines using primary rat neuronal cortical cultures. Neuroscience, 2014, 277, 417-434.	2.3	7
26	The Mixture of "Ecstasy―and Its Metabolites Impairs Mitochondrial Fusion/Fission Equilibrium and Trafficking in Hippocampal Neurons, at In Vivo Relevant Concentrations. Toxicological Sciences, 2014, 139, 407-420.	3.1	24
27	Neuronal Mitochondrial Trafficking Impairment: The Cause or a Consequence of Neuronal Dysfunction Caused by Amphetamine-Like Drugs. Journal of Drug and Alcohol Research, 2014, 3, 1-7.	0.9	1
28	Neurotoxicity of "ecstasy―and its metabolites in human dopaminergic differentiated SH-SY5Y cells. Toxicology Letters, 2013, 216, 159-170.	0.8	39
29	The neurotoxicity of hallucinogenic amphetamines in primary cultures of hippocampal neurons. NeuroToxicology, 2013, 34, 254-263.	3.0	37
30	â€~Ecstasy' and amphetamine neurotoxicity to cultured rat cortical neurons in a continuous exposure model. Toxicology Letters, 2013, 221, S233.	0.8	0
31	Differential Effects of Methyl-4-Phenylpyridinium Ion, Rotenone, and Paraquat on Differentiated SH-SY5Y Cells. Journal of Toxicology, 2013, 2013, 1-10.	3.0	29
32	Toxicity of amphetamines: an update. Archives of Toxicology, 2012, 86, 1167-1231.	4.2	364
33	Proâ€oxidant effects of Ecstasy and its metabolites in mouse brain synaptosomes. British Journal of Pharmacology, 2012, 165, 1017-1033.	5.4	51
34	N-acetyl-cysteine prevents the cytotoxicity of adrenaline oxidation in SH-SY5Y cells. Toxicology Letters, 2011, 205, S220.	0.8	0
35	Effect of 3,4-methylenedioxyamphetamine on dendritic spine dynamics in rat neocortical neurons — Involvement of heat shock protein 27. Brain Research, 2011, 1370, 43-52.	2.2	7
36	Molecular and Cellular Mechanisms of Ecstasy-Induced Neurotoxicity: An Overview. Molecular Neurobiology, 2009, 39, 210-271.	4.0	251

JOãO PAULO CAPELA

#	Article	IF	CITATIONS
37	5,7-Dihydroxitryptamine toxicity to serotonergic neurons in serum free raphe cultures. European Journal of Pharmacology, 2008, 588, 232-238.	3.5	10
38	Synthesis and Cyclic Voltammetry Studies of 3,4-Methylenedioxymethamphetamine (MDMA) Human Metabolites. Journal of Health Science, 2007, 53, 31-42.	0.9	30
39	Neurotoxicity mechanisms of thioether ecstasy metabolites. Neuroscience, 2007, 146, 1743-1757.	2.3	92
40	Ecstasy induces apoptosis via 5-HT2A-receptor stimulation in cortical neurons. NeuroToxicology, 2007, 28, 868-875.	3.0	67
41	Neurotoxicity of Ecstasy Metabolites in Rat Cortical Neurons, and Influence of Hyperthermia. Journal of Pharmacology and Experimental Therapeutics, 2006, 316, 53-61.	2.5	71
42	Ecstasy-induced cell death in cortical neuronal cultures is 5-HT2A-receptor-dependent and potentiated under hyperthermia. Toxicology Letters, 2006, 164, S116.	0.8	0
43	Neurotoxicity of ecstasy metabolites in rat cortical neurons, and influence of hyperthermia. Toxicology Letters, 2006, 164, S118.	0.8	Ο
44	Ecstasy-induced cell death in cortical neuronal cultures is serotonin 2A-receptor-dependent and potentiated under hyperthermia. Neuroscience, 2006, 139, 1069-1081.	2.3	71
45	Potential health risks surrounding ingredients of pre-workout and post-workout dietary supplements: a thorough label analysis. Revista De Nutricao, 0, 35, .	0.4	0