Mary Bebawy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8429233/publications.pdf

Version: 2024-02-01

76 papers

11,575 citations

126858 33 h-index 95218 68 g-index

76 all docs

76 docs citations

76 times ranked 19794 citing authors

#	Article	IF	CITATIONS
1	Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 2018, 7, 1535750.	5 . 5	6,961
2	Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). European Journal of Immunology, 2019, 49, 1457-1973.	1.6	766
3	Curcumin and its Derivatives: Their Application in Neuropharmacology and Neuroscience in the 21st Century. Current Neuropharmacology, 2013, 11, 338-378.	1.4	422
4	Liquid Biopsies in Cancer Diagnosis, Monitoring, and Prognosis. Trends in Pharmacological Sciences, 2019, 40, 172-186.	4.0	393
5	Inhibition of the Multidrug Resistance P-Glycoprotein: Time for a Change of Strategy?. Drug Metabolism and Disposition, 2014, 42, 623-631.	1.7	330
6	Glioma microvesicles carry selectively packaged coding and non-coding RNAs which alter gene expression in recipient cells. RNA Biology, 2013, 10, 1333-1344.	1.5	210
7	Nanoparticles in Cancer Treatment: Opportunities and Obstacles. Current Drug Targets, 2018, 19, 1696-1709.	1.0	145
8	MRP1 and its role in anticancer drug resistance. Drug Metabolism Reviews, 2015, 47, 406-419.	1.5	110
9	Microparticleâ€associated nucleic acids mediate trait dominance in cancer. FASEB Journal, 2012, 26, 420-429.	0.2	108
10	Time- and passage-dependent characteristics of a Calu-3 respiratory epithelial cell model. Drug Development and Industrial Pharmacy, 2010, 36, 1207-1214.	0.9	98
11	Microparticle conferred microRNA profiles - implications in the transfer and dominance of cancer traits. Molecular Cancer, $2012, 11, 37$.	7.9	93
12	Breast Cancer-Derived Microparticles Display Tissue Selectivity in the Transfer of Resistance Proteins to Cells. PLoS ONE, 2013, 8, e61515.	1.1	92
13	Assessing the potential of liposomes loaded with curcumin as a therapeutic intervention in asthma. Colloids and Surfaces B: Biointerfaces, 2018, 172, 51-59.	2.5	79
14	Microparticles mediate MRP1 intercellular transfer and the re-templating of intrinsic resistance pathways. Pharmacological Research, 2013, 76, 77-83.	3.1	72
15	Microparticle drug sequestration provides a parallel pathway in the acquisition of cancer drug resistance. European Journal of Pharmacology, 2013, 721, 116-125.	1.7	66
16	Microparticles in cancer: A review of recent developments and the potential for clinical application. Seminars in Cell and Developmental Biology, 2015, 40, 35-40.	2.3	65
17	Dynamic and intracellular trafficking of P-glycoprotein-EGFP fusion protein: Implications in multidrug resistance in cancer. International Journal of Cancer, 2004, 109, 174-181.	2.3	62
18	Fabrication of Curcumin Micellar Nanoparticles with Enhanced Anti-Cancer Activity. Journal of Biomedical Nanotechnology, 2015, 11, 1093-1105.	0.5	62

#	Article	IF	Citations
19	Anti-tumor activities of lipids and lipid analogues and their development as potential anticancer drugs., 2015, 150, 109-128.		61
20	Ca ²⁺ mediates extracellular vesicle biogenesis through alternate pathways in malignancy. Journal of Extracellular Vesicles, 2020, 9, 1734326.	5.5	55
21	Isolation of Human CD138+ Microparticles from the Plasma of Patients with Multiple Myeloma. Neoplasia, 2016, 18, 25-32.	2.3	54
22	Deposition, Diffusion and Transport Mechanism of Dry Powder Microparticulate Salbutamol, at the Respiratory Epithelia. Molecular Pharmaceutics, 2012, 9, 1717-1726.	2.3	51
23	Ciprofloxacin Is Actively Transported across Bronchial Lung Epithelial Cells Using a Calu-3 Air Interface Cell Model. Antimicrobial Agents and Chemotherapy, 2013, 57, 2535-2540.	1.4	49
24	Tumor suppressor role of miR-503. Panminerva Medica, 2018, 60, 17-24.	0.2	49
25	In vitro and ex vivo methods predict the enhanced lung residence time of liposomal ciprofloxacin formulations for nebulisation. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 86, 83-89.	2.0	46
26	Chronic obstructive pulmonary disease: patho-physiology, current methods of treatment and the potential for simvastatin in disease management. Expert Opinion on Drug Delivery, 2011, 8, 1205-1220.	2.4	45
27	Epithelial Profiling of Antibiotic Controlled Release Respiratory Formulations. Pharmaceutical Research, 2011, 28, 2327-2338.	1.7	45
28	Proteome analysis of multidrugâ€resistant, breast cancer–derived microparticles. Journal of Extracellular Vesicles, 2014, 3, .	5.5	45
29	The Role of CD44 and ERM Proteins in Expression and Functionality of P-glycoprotein in Breast Cancer Cells. Molecules, 2016, 21, 290.	1.7	45
30	Role of Lung Microbiome in Innate Immune Response Associated With Chronic Lung Diseases. Frontiers in Medicine, 2020, 7, 554.	1,2	43
31	Cell-Derived Microparticles: New Targets in the Therapeutic Management of Disease. Journal of Pharmacy and Pharmaceutical Sciences, 2013, 16, 238.	0.9	41
32	Targeting Microparticle Biogenesis: A Novel Approach to the Circumvention of Cancer Multidrug Resistance. Current Cancer Drug Targets, 2015, 15, 205-214.	0.8	39
33	Functional relevance of SATB1 in immune regulation and tumorigenesis. Biomedicine and Pharmacotherapy, 2018, 104, 87-93.	2.5	37
34	Proteins Regulating Microvesicle Biogenesis and Multidrug Resistance in Cancer. Proteomics, 2019, 19, e1800165.	1.3	37
35	Microparticles shed from multidrug resistant breast cancer cells provide a parallel survival pathway through immune evasion. BMC Cancer, 2017, 17, 104.	1.1	36
36	Cellular communication via microparticles: role in transfer of multidrug resistance in cancer. Future Oncology, 2014, 10, 655-669.	1.1	34

#	Article	IF	CITATIONS
37	Microparticles Mediate the Intercellular Regulation of microRNA-503 and Proline-Rich Tyrosine Kinase 2 to Alter the Migration and Invasion Capacity of Breast Cancer Cells. Frontiers in Oncology, 2014, 4, 220.	1.3	31
38	Therapeutic prospects of microRNAs in cancer treatment through nanotechnology. Drug Delivery and Translational Research, 2018, 8, 97-110.	3.0	31
39	Circulating tumor DNA – Current state of play and future perspectives. Pharmacological Research, 2018, 136, 35-44.	3.1	31
40	Modulation of P-glycoprotein-Mediated Anticancer Drug Accumulation, Cytotoxicity, and ATPase Activity by Flavonoid Interactions. Nutrition and Cancer, 2011, 63, 435-443.	0.9	30
41	Multiple myeloma and persistence of drug resistance in the age of novel drugs (Review). International Journal of Oncology, 2016, 49, 33-50.	1.4	29
42	Targeting Cancer using Curcumin Encapsulated Vesicular Drug Delivery Systems. Current Pharmaceutical Design, 2021, 27, 2-14.	0.9	29
43	A Continuous Fluorescence Assay for the Study of P-Glycoprotein-Mediated Drug Efflux Using Inside-Out Membrane Vesicles. Analytical Biochemistry, 1999, 268, 270-277.	1.1	28
44	Synthesis and in vitro biological evaluation of thiosulfinate derivatives for the treatment of human multidrug-resistant breast cancer. Acta Pharmacologica Sinica, 2017, 38, 1353-1368.	2.8	28
45	Role of the Tristetraprolin (Zinc Finger Protein 36 Homolog) Gene in Cancer. Critical Reviews in Eukaryotic Gene Expression, 2018, 28, 217-221.	0.4	28
46	Differential pharmacological regulation of drug efflux and pharmacoresistant schizophrenia. BioEssays, 2008, 30, 183-188.	1.2	27
47	Characterization of PXR mediated P-glycoprotein regulation in intestinal LS174T cells. Pharmacological Research, 2010, 62, 426-431.	3.1	27
48	A novel mechanism governing the transcriptional regulation of ABC transporters in MDR cancer cells. Drug Delivery and Translational Research, 2017, 7, 276-285.	3.0	27
49	Proteins regulating the intercellular transfer and function of P-glycoprotein in multidrug-resistant cancer. Ecancermedicalscience, 2017, 11, 768.	0.6	25
50	Recent advances in experimental animal models of lung cancer. Future Medicinal Chemistry, 2020, 12, 567-570.	1.1	25
51	Application of Chitosan and its Derivatives in Nanocarrier Based Pulmonary Drug Delivery Systems. Pharmaceutical Nanotechnology, 2018, 5, 243-249.	0.6	25
52	A liquid biopsy to detect multidrug resistance and disease burden in multiple myeloma. Blood Cancer Journal, 2020, 10, 37.	2.8	24
53	Multiple dosing of simvastatin inhibits airway mucus production of epithelial cells: Implications in the treatment of chronic obstructive airway pathologies. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 84, 566-572.	2.0	23
54	Fluticasone uptake across Caluâ€3 cells is mediated by salmeterol when deposited as a combination powder inhaler. Respirology, 2013, 18, 1197-1201.	1.3	23

#	Article	IF	Citations
55	Deciphering Cell-to-Cell Communication in Acquisition of Cancer Traits: Extracellular Membrane Vesicles Are Regulators of Tissue Biomechanics. OMICS A Journal of Integrative Biology, 2016, 20, 462-469.	1.0	19
56	Immunological axis of curcumin-loaded vesicular drug delivery systems. Future Medicinal Chemistry, 2018, 10, 839-844.	1.1	19
57	Targeting respiratory diseases using miRNA inhibitor based nanotherapeutics: Current status and future perspectives. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 31, 102303.	1.7	16
58	Calcium-calpain Dependent Pathways Regulate Vesiculation in Malignant Breast Cells. Current Cancer Drug Targets, 2017, 17, 486-494.	0.8	15
59	Advancements in nano drug delivery systems: a challenge for biofilms in respiratory diseases. Panminerva Medica, 2018, 60, 35-36.	0.2	13
60	Nano-antibiotics: a novel approach in treating P. aeruginosa biofilm infections. Minerva Medica, 2018, 109, 400.	0.3	9
61	A novel method to detect translation of membrane proteins following microvesicle intercellular transfer of nucleic acids. Journal of Biochemistry, 2016, 160, 281-289.	0.9	8
62	Curcumin-loaded niosomes downregulate mRNA expression of pro-inflammatory markers involved in asthma: an <i>in vitro</i> study. Nanomedicine, 2020, 15, 2955-2970.	1.7	8
63	Novel drug delivery approaches in treating pulmonary fibrosis. Panminerva Medica, 2018, 60, 238-240.	0.2	8
64	Nanoparticle-based therapies as a modality in treating wounds and preventing biofilm. Panminerva Medica, 2018, 60, 237-238.	0.2	5
65	Modification of Disodium Cromoglycate Passage Across Lung Epithelium In Vitro Via Incorporation into Polymeric Microparticles. AAPS Journal, 2012, 14, 79-86.	2.2	4
66	ABCB1 (P-glycoprotein) reduces bacterial attachment to human gastrointestinal LS174T epithelial cells. European Journal of Pharmacology, 2012, 689, 204-210.	1.7	4
67	Membrane to cytosol redistribution of αllâ€spectrin drives extracellular vesicle biogenesis in malignant breast cells. Proteomics, 2021, 21, 2000091.	1.3	4
68	An analysis of the therapeutic benefits of genotyping in pediatric hematopoietic stem cell transplantation. Future Oncology, 2015, 11, 833-851.	1.1	3
69	Extracellular Vesicles in Chemoresistance. Sub-Cellular Biochemistry, 2021, 97, 211-245.	1.0	3
70	Abstract PR08: Microparticles derived from drug-resistant cells regulate miR-503 and PYK2 to promote migration and invasion in breast cancer. , 2015 , , .		0
71	Abstract B52: A novel personalized therapeutic management in multiple myeloma. , 2015, , .		0
72	Abstract B19: Functional translation of total RNA packaged in microparticles shed from multidrug resistant cancer cells. , 2015 , , .		0

#	Article	IF	CITATIONS
73	Abstract B45: Multiple myeloma: A novel tailor-made therapeutic management , 2015, , .		O
74	Abstract 5306: Microparticles as novel prognostic markers in multiple myeloma., 2015,,.		0
75	Abstract 5114: The role of microvesicles on immune function in response to cancer. , 2016, , .		O
76	Abstract 249: Breast cancer cell vesiculation is driven by calpain: implications in cancer therapy. , 2016,		0