Tianyu Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8429182/publications.pdf Version: 2024-02-01

Τιληγίι Γι

#	Article	IF	CITATIONS
1	NaNbO3-CaTiO3 lead-free relaxor antiferroelectric ceramics featuring giant energy density, high energy efficiency and power density. Chemical Engineering Journal, 2022, 429, 132534.	12.7	69
2	X9R-type Ag1-3Bi NbO3 based lead-free dielectric ceramic capacitors with excellent energy-storage properties. Ceramics International, 2022, 48, 2533-2537.	4.8	16
3	Outstanding energy-storage and charge–discharge performances in Na0.5Bi0.5TiO3 lead-free ceramics via linear additive of Ca0.85Bi0.1TiO3. Chemical Engineering Journal, 2022, 435, 135065.	12.7	32
4	Ultrahigh Energy-Storage Performances in Lead-free Na _{0.5} Bi _{0.5} TiO ₃ -Based Relaxor Antiferroelectric Ceramics through a Synergistic Design Strategy. ACS Applied Materials & Interfaces, 2022, 14, 22263-22269.	8.0	53
5	Significantly improved dielectric properties of TiO2 ceramics through acceptor-doping and Ar/H2 annealing. Ceramics International, 2021, 47, 1551-1557.	4.8	11
6	Energy storage performance of Na0.5Bi0.5TiO3-SrTiO3 lead-free relaxors modified by AgNb0.85Ta0.15O3. Chemical Engineering Journal, 2021, 406, 127151.	12.7	117
7	Simultaneously achieved high energy-storage and superior charge–discharge performance in K0.5Bi0.5TiO3-based lead-free ceramics by A-site defect engineering. Journal of Materials Science: Materials in Electronics, 2021, 32, 12121-12133.	2.2	12
8	Effects of sintering method on the structural, dielectric and energy storage properties of AgNbO3 lead-free antiferroelectric ceramics. Journal of Materials Science, 2021, 56, 13499-13508.	3.7	24
9	Effect of Bi(Li0.5Nb0.5)O3 addition on structural, dielectric, and energy storage properties of Na0.5Bi0.5TiO3-BaZrO3 lead-free ceramics. Journal of Materials Science: Materials in Electronics, 2021, 32, 20342-20350.	2.2	6
10	Superior Linear Response of K ₂ Ti ₂ O ₅ in Low and Medium Humidity Ranges. ACS Applied Electronic Materials, 2021, 3, 3445-3450.	4.3	2
11	Outstanding Energy Storage Performance of Na _{0.5} Bi _{0.5} TiO ₃ -BaTiO ₃ -(Sr _{0.85} Bi _{0.1Lead-Free Ceramics. ACS Applied Energy Materials, 2021, 4, 9362-9367.}	sub ぁ)(Mg∢	รน ⊭ ฺอ1/3
12	Excellent energy storage properties in NaNbO3-based lead-free ceramics by modulating antiferrodistortive of P phase. Journal of Alloys and Compounds, 2021, 898, 162934.	5.5	9
13	Tuning the electrocaloric effect in 0.94Bi0.5Na0.5TiO3-0.06BaTiO3 ceramics by relaxor phase blending. Ceramics International, 2020, 46, 4454-4461.	4.8	7
14	Lowâ€ŧemperature Maxwellâ€Wagner relaxation in (NaÂ+ÂNb) coâ€doped rutile TiO ₂ colossal permittivity ceramics. Journal of the American Ceramic Society, 2020, 103, 1839-1845.	3.8	19
15	High energy storage performance and fast discharging speed in dense 0.7Bi0.5K0.5TiO3-0.3SrTiO3 ceramics via a novel rolling technology. Ceramics International, 2020, 46, 6995-6998.	4.8	23
16	High energy storage density and efficiency with excellent temperature and frequency stabilities under low operating field achieved in Ag0.91Sm0.03NbO3-modified Na0.5Bi0.5TiO3-BaTiO3 ceramics. Journal of Materials Science: Materials in Electronics, 2020, 31, 16928-16937.	2.2	15
17	Colossal permittivity in (Li + Nb) co-doped Fe2O3 ceramics. Current Applied Physics, 2020, 20, 866-870.	2.4	2
18	Normal-relaxor ferroelectric phase transition induced morphotropic phase boundary accompanied by enhanced piezoelectric and electrostrain properties in strontium modulated Bi0.5K0.5TiO3 lead-free ceramics. Journal of the European Ceramic Society, 2020, 40, 3918-3927.	5.7	23

Tianyu Li

#	Article	IF	CITATIONS
19	Metastable oxygen vacancy ordering state and improved memristive behavior in TiO2 crystals. Science Bulletin, 2020, 65, 631-639.	9.0	15
20	TiO2/NaNbO3 heterojunction for boosted humidity sensing ability. Sensors and Actuators B: Chemical, 2020, 309, 127803.	7.8	27
21	TiO ₂ /(K,Na)NbO ₃ Nanocomposite for Boosting Humidity-Sensing Performances. ACS Sensors, 2020, 5, 1345-1353.	7.8	46
22	Fine-grain induced outstanding energy storage performance in novel Bi _{0.5} K _{0.5} TiO ₃ –Ba(Mg _{1/3} Nb _{2/3})O _{3ceramics <i>via</i> a hot-pressing strategy. Journal of Materials Chemistry C, 2019, 7, 12127-12138.}	ub\$>5	119
23	Ciant and controllable humidity sensitivity achieved in (Na+Nb) co-doped rutile TiO2. Sensors and Actuators B: Chemical, 2019, 293, 151-158.	7.8	36
24	Microstructure, colossal permittivity, and humidity sensitivity of (Na, Nb) coâ€doped rutile TiO ₂ ceramics. Journal of the American Ceramic Society, 2019, 102, 6688-6696.	3.8	18
25	Colossal dielectric behavior in BaFeO3-Î [^] ceramics. Ceramics International, 2019, 45, 13484-13487.	4.8	21
26	Effect of Y2O3, Nd2O3 or Sm2O3 on the microstructure and electrical properties of ZnVMnNbO varistor ceramics. Journal of Materials Science: Materials in Electronics, 2019, 30, 450-456.	2.2	15
27	Using semi-finished Ce-La extracts as the sole RE source to synthesize high-performance ZnVMnNbO varistor ceramics. Ceramics International, 2018, 44, 6912-6917.	4.8	9
28	Giant strains of 0.5% accompanying polarization extension and polarization rotation in (Bi0.5Na0.5)TiO3–PbTiO3–Pb(Zn1/3Nb2/3)O3 ternary system. Journal of Materials Science: Materials in Electronics, 0, , 1.	2.2	0