Nipon Pisutpaisal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8428652/publications.pdf Version: 2024-02-01

NIDON DISLITEALSAL

#	Article	IF	CITATIONS
1	Production of hydrogen and methane by one and two stage fermentation of food waste. International Journal of Hydrogen Energy, 2013, 38, 15764-15769.	3.8	152
2	Plant oils as promising substrates for polyhydroxyalkanoates production. Journal of Cleaner Production, 2015, 106, 408-421.	4.6	78
3	Adsorption of Quinoline to Kaolinite and Montmorillonite. Environmental Engineering Science, 2002, 19, 59-68.	0.8	72
4	Production of Hydrogen and Methane from Banana Peel by Two Phase Anaerobic Fermentation. Energy Procedia, 2014, 50, 702-710.	1.8	45
5	Biological Hydrogen and Methane Production in from Food Waste in Two-stage CSTR. Energy Procedia, 2014, 50, 719-722.	1.8	44
6	Analysis of microbial community adaptation in mesophilic hydrogen fermentation from food waste by tagged 16S rRNA gene pyrosequencing. Journal of Environmental Management, 2014, 144, 143-151.	3.8	42
7	Simultaneous pollution treatment and electricity generation of tannery wastewater in air-cathode single chamber MFC. International Journal of Hydrogen Energy, 2016, 41, 15632-15637.	3.8	42
8	Feasibility of Biogas Production from Napier Grass. Energy Procedia, 2014, 61, 1229-1233.	1.8	41
9	Hydrogen sulfide removal in biotrickling filter system by Halothiobacillus neapolitanus. International Journal of Hydrogen Energy, 2016, 41, 15682-15687.	3.8	39
10	Hydrogen sulfide removal from biogas by biotrickling filter inoculated with Halothiobacillus neapolitanus. International Journal of Hydrogen Energy, 2017, 42, 18425-18433.	3.8	36
11	Membrane-less MFC based biosensor for monitoring wastewater quality. International Journal of Hydrogen Energy, 2018, 43, 483-489.	3.8	34
12	Feasibility of Biomethane Production from Banana Peel. Energy Procedia, 2014, 50, 782-788.	1.8	32
13	Sulfide-oxidizing bacteria community in full-scale bioscrubber treating H2S in biogas from swine anaerobic digester. Renewable Energy, 2020, 150, 973-980.	4.3	31
14	Stability of Clostridium butyricum in biohydrogen production from non-sterile food waste. International Journal of Hydrogen Energy, 2017, 42, 3454-3465.	3.8	28
15	Sorption of naphthoic acids and quinoline compounds to estuarine sediment. Journal of Contaminant Hydrology, 2006, 84, 107-126.	1.6	26
16	Biodegradation of 1-Naphthol in the Presence of Humic Acid. Environmental Engineering Science, 2000, 17, 343-351.	0.8	25
17	Bioenergy from dairy manure: technologies, challenges and opportunities. Science of the Total Environment, 2021, 790, 148199.	3.9	23
18	Improvement of Mesophilic Biohydrogen Production from Palm Oil Mill Effluent Using Ozonation Process. Energy Procedia, 2014, 50, 723-728.	1.8	21

NIPON PISUTPAISAL

#	Article	IF	CITATIONS
19	Biomethane Production from Co-digestion of Banana Peel and Waste Glycerol. Energy Procedia, 2014, 61, 2219-2223.	1.8	20
20	Biohydrogen Production under Thermophilic Condition from Ozonated Palm Oil Mill Effluent. Energy Procedia, 2014, 61, 1234-1238.	1.8	19
21	Waste utilization of palm oil decanter cake on biogas fermentation. International Journal of Hydrogen Energy, 2016, 41, 15661-15666.	3.8	18
22	Microbial dynamics in ethanol fermentation from glycerol. International Journal of Hydrogen Energy, 2016, 41, 15667-15673.	3.8	17
23	Co-digestion of waste glycerol and glucose to enhance biogas production. International Journal of Hydrogen Energy, 2019, 44, 29575-29582.	3.8	17
24	Performance of Paracoccus pantotrophus for H2S removal in biotrickling filter. International Journal of Hydrogen Energy, 2017, 42, 27820-27825.	3.8	16
25	Biomethane Production from co-fermentation of agricultural wastes. International Journal of Hydrogen Energy, 2019, 44, 5355-5364.	3.8	16
26	Hydrogen sulfide removal from biogas in biotrickling filter system inoculated with Paracoccus pantotrophus. International Journal of Hydrogen Energy, 2019, 44, 29554-29560.	3.8	15
27	Optimization of biohydrogen production of palm oil mill effluent by ozone pretreatment. International Journal of Hydrogen Energy, 2019, 44, 5203-5211.	3.8	13
28	Potential Application of Halothiobacillus Neapolitanus for Hydrogen Sulfide Removal in Biogas. Energy Procedia, 2014, 61, 1219-1223.	1.8	12
29	Performance of A Membrane-Less Air-Cathode Single Chamber Microbial Fuel Cell in Electricity Generation from Distillery Wastewater. Energy Procedia, 2015, 79, 646-650.	1.8	12
30	Utilization of oil palm decanter cake for valuable laccase and manganese peroxidase enzyme production from a novel white-rot fungus, Pseudolagarobasidium sp. PP17-33. 3 Biotech, 2019, 9, 417.	1.1	12
31	Sulfur-oxidizing bacteria in full-scale biogas cleanup system of ethanol industry. Renewable Energy, 2020, 150, 965-972.	4.3	12
32	Optimizing Sulfur Oxidizing Performance of Paracoccus Pantotrophus Isolated from Leather Industry Wastewater. Energy Procedia, 2015, 79, 629-633.	1.8	10
33	Production of methane from ozonated palm oil mill effluent. International Journal of Hydrogen Energy, 2019, 44, 29561-29567.	3.8	10
34	Biosynthesis of medium chain length polyhydroxyalkanoates (mcl-PHAs) from palm oil. Case Studies in Chemical and Environmental Engineering, 2020, 2, 100045.	2.9	10
35	Kinetics of Biohydrogen Production from Ozonated Palm Oil Mill Effluent Using <i>C. butyricum</i> and <i>C. acetobutylicum</i> Co-Culture. Advanced Materials Research, 0, 512-515, 1515-1519.	0.3	9
36	Improvement of glycerol waste utilization by co-feedstock with palm oil decanter cake on biohydrogen fermentation. International Journal of Hydrogen Energy, 2017, 42, 3447-3453.	3.8	9

NIPON PISUTPAISAL

#	Article	IF	CITATIONS
37	Profile of sulfur oxidizing bacteria in full-scale Biotrickling filter to remove H2S in biogas from in cassava starch industry. Energy Reports, 2021, 7, 677-685.	2.5	9
38	Improvement of Biomethane Production Yield from Palm Oil Mill Effluent Using Ozonation Process. Energy Procedia, 2014, 61, 2239-2243.	1.8	8
39	Development of Rapid Chemical Oxygen Demand Analysis Using Ozone as Oxidizing Agent. Energy Procedia, 2014, 50, 711-718.	1.8	8
40	Simultaneous Treatment of Nitrogen-Rich Wastewater and ElectricityGeneration using Single-Chamber Microbial Fuel Cells. Energy Procedia, 2015, 79, 624-628.	1.8	8
41	Bioelectricity recovery and pollution reduction of distillery wastewater in air-cathode SCMFC. International Journal of Hydrogen Energy, 2019, 44, 5481-5487.	3.8	8
42	Productivity of Pseudomonas putida TISTR 1522 in polyhydroxyalkanoates (PHAs) production from saponified palm oil. Applied Biochemistry and Biotechnology, 2021, 193, 1086-1098.	1.4	8
43	Influence of Inoculum Pretreatment on the Performance of an Air-Cathode Single-Chamber Microbial Fuel Cell. Energy Procedia, 2015, 79, 641-645.	1.8	7
44	Impact of acetic acid in methane production from glycerol/acetic acid co-fermentation. International Journal of Hydrogen Energy, 2019, 44, 29568-29574.	3.8	7
45	High Potential Decolourisation of Textile Dyes from Wastewater by Manganese Peroxidase Production of Newly Immobilised Trametes hirsuta PW17-41 and FTIR Analysis. Microorganisms, 2022, 10, 992.	1.6	7
46	Comparative Performance of Halothiobacillus Neapolitanus and Paracoccus Pantotrophus in Sulphur Oxidation. Energy Procedia, 2015, 79, 885-889.	1.8	6
47	Ozonation aided mesophilic biohydrogen production from palm oil mill effluent. International Journal of Hydrogen Energy, 2019, 44, 5182-5188.	3.8	6
48	Ethanol production from waste glycerol using glucose as co-carbon source. Biomass Conversion and Biorefinery, 2023, 13, 2769-2778.	2.9	5
49	Optimization of ethanol production from co-substrate of waste glycerol and acetic acid by Enterobacter aerogenes. Biomass Conversion and Biorefinery, 2023, 13, 10505-10512.	2.9	5
50	Potential of Napier grass Pak Chong 1 as feedstock for biofuel production. Energy Reports, 2021, 7, 519-526.	2.5	5
51	Simultaneous Electricity Generation and Pollutant Removal in Nitrogen-rich Wastewater Using Microbial Fuel Cells. Energy Procedia, 2014, 61, 1224-1228.	1.8	4
52	Kinetics of Bioethanol Production from Glycerol by Enterobacter Aerogenes. Energy Procedia, 2014, 61, 2244-2248.	1.8	3
53	Thermophilic biohydrogen recovery from palm oil mill effluent. International Journal of Hydrogen Energy, 2019, 44, 5176-5181.	3.8	3
54	Carbon Mass Balance of Biohydrogen Production Process by <i>Clostridium</i> <i>butyricum TISTR 1032</i> : Effect of Oxygen Scavenger. Advanced Materials Research, 0, 512-515, 1466-1472.	0.3	2

NIPON PISUTPAISAL

#	Article	IF	CITATIONS
55	Bioethanol Production from Glycerol by Mixed Culture System. Energy Procedia, 2014, 61, 1213-1218.	1.8	2
56	Effect of Nitrogen Concentration on the Performance of Single-Chamber Microbial Fuel Cells. Energy Procedia, 2015, 79, 620-623.	1.8	2
57	Fly ash utilization for methane production improvement from co-digestion between cow dung and Pennisetum Purpureum. Energy Reports, 2021, 7, 591-598.	2.5	2
58	DNA microarray for detection and identification of sulfur oxidizing bacteria in Biogas Clean-up System. Energy Reports, 2021, 7, 559-568.	2.5	2
59	Bioelectricity Generation from Wastewaters in Microbial Fuel Cells. Advanced Materials Research, 0, 512-515, 1456-1460.	0.3	1
60	Impact of Glycerol Concentration on Lactic Acid Fermentation. Advanced Materials Research, 0, 610-613, 356-358.	0.3	1
61	Treatment of Palm Oil Mill Effluent by Electrocoagulation Process. Advanced Materials Research, 2012, 610-613, 363-367.	0.3	1
62	Enhancement of Biohydrogen Yield by Co-digestion of Waste Glycerol and Glucose. Energy Procedia, 2014, 61, 2249-2253.	1.8	1
63	Electric Generation from Carbohydrate-rich Wastewater Using Air-cathode SCMFC. Energy Procedia, 2014, 61, 1239-1243.	1.8	0