Chin Pao Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8428266/publications.pdf

Version: 2024-02-01

10389 17105 18,540 316 72 citations h-index papers

122 g-index 318 318 318 17052 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	Size dependency of nanocrystalline TiO2 on its optical property and photocatalytic reactivity exemplified by 2-chlorophenol. Applied Catalysis B: Environmental, 2006, 68, 1-11.	20.2	775
2	Specific adsorption of cations on hydrous \hat{I}^3 -Al2O3. Journal of Colloid and Interface Science, 1973, 43, 409-420.	9.4	484
3	Electrochemical generation of hydrogen peroxide from dissolved oxygen in acidic solutions. Water Research, 2002, 36, 85-94.	11.3	432
4	Advanced chemical oxidation: Its present role and potential future in hazardous waste treatment. Waste Management, 1993, 13, 361-377.	7.4	427
5	Nitrate reduction by metallic iron. Water Research, 1998, 32, 2257-2264.	11.3	427
6	Competitive Adsorption of Heavy Metals by Soils. Journal of Environmental Quality, 1986, 15, 214-219.	2.0	367
7	Optimization of Fenton process for the treatment of landfill leachate. Journal of Hazardous Materials, 2005, 125, 166-174.	12.4	342
8	The adsorption of heavy metals onto hydrous activated carbon. Water Research, 1987, 21, 1031-1044.	11.3	339
9	Effects of pore structure and temperature on VOC adsorption on activated carbon. Carbon, 2001, 39, 523-534.	10.3	329
10	Visible-light sensitive cobalt-doped BiVO4 (Co-BiVO4) photocatalytic composites for the degradation of methylene blue dye in dilute aqueous solutions. Applied Catalysis B: Environmental, 2010, 99, 214-221.	20.2	285
11	Optimizing the treatment of landfill leachate by conventional Fenton and photo-Fenton processes. Science of the Total Environment, 2009, 407, 3473-3481.	8.0	281
12	The removal of Cu(II) from dilute aqueous solutions by Saccharomyces cerevisiae. Water Research, 1990, 24, 433-439.	11.3	269
13	2,4-Dichlorophenol Oxidation Kinetics by Fenton's Reagent. Environmental Technology (United) Tj ETQq1 1 0.784	4314 rgBT 2.2	/Qyerlock 10
14	Size dependence of thermal stability of TiO2 nanoparticles. Journal of Applied Physics, 2004, 96, 6663-6668.	2.5	250
15	Electrochemical regeneration of Fe2+ in Fenton oxidation processes. Water Research, 2003, 37, 1308-1319.	11.3	231
16	Adsorption of Mercury(II) by Soil: Effects of pH, Chloride, and Organic Matter. Journal of Environmental Quality, 1996, 25, 837-844.	2.0	225
17	The removal of chromium(VI) from dilute aqueous solution by activated carbon. Water Research, 1977, 11, 673-679.	11.3	217
18	Kinetics of Mercury(II) Adsorption and Desorption on Soil. Environmental Science & Environmental Scien	10.0	200

#	Article	IF	Citations
19	The surface acidity and characterization of some commercial activated carbons. Carbon, 1987, 25, 569-578.	10.3	188
20	Adsorption characteristics of some Cu(II) complexes on aluminosilicates. Water Research, 1981, 15, 849-855.	11.3	184
21	Photocatalytic degradation of bisphenol A over a ZnFe2O4/TiO2 nanocomposite under visible light. Science of the Total Environment, 2019, 646, 745-756.	8.0	182
22	Application of Aspergillus oryze and Rhizopus oryzae for Cu(II) removal. Water Research, 1996, 30, 1985-1990.	11.3	176
23	Band gap tailoring of Nd3+-doped TiO2 nanoparticles. Applied Physics Letters, 2003, 83, 4143-4145.	3.3	168
24	The surface characteristics of activated carbon as affected by ozone and alkaline treatment. Chemosphere, 2002, 47, 257-265.	8.2	166
25	Adsorption of arsenic(V) by activated carbon prepared from oat hulls. Chemosphere, 2005, 61, 478-483.	8.2	165
26	Formation of Bi ₂ WO ₆ Bipyramids with Vacancy Pairs for Enhanced Solarâ€Driven Photoactivity. Advanced Functional Materials, 2015, 25, 3726-3734.	14.9	155
27	Enhanced catalytic reduction of nitrophenols by sodium borohydride over highly recyclable Au@graphitic carbon nitride nanocomposites. Applied Catalysis B: Environmental, 2019, 240, 337-347.	20.2	153
28	Oxidation of single-walled carbon nanotubes in dilute aqueous solutions by ozone as affected by ultrasound. Carbon, 2008, 46, 466-475.	10.3	150
29	Predicting Soilâ^'Water Partition Coefficients for Cadmium. Environmental Science & Eamp; Technology, 1996, 30, 3418-3424.	10.0	147
30	The adsorption characteristics of Cu(II) in the presence of chelating agents. Journal of Colloid and Interface Science, 1979, 70, 29-45.	9.4	135
31	Adsorption characteristics of metal-EDTA complexes onto hydrous oxides. Journal of Colloid and Interface Science, 1986, 110, 575-590.	9.4	135
32	Factors affecting the distribution of heavy metals in wastewater treatment processes: role of sludge particulate. Water Science and Technology, 2001, 44, 47-52.	2.5	134
33	Adsorption characteristics of Zn(II) from dilute aqueous solution by fly ash. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 247, 137-143.	4.7	134
34	Promoted degradation of perfluorooctanic acid by persulfate when adding activated carbon. Journal of Hazardous Materials, 2013, 261, 463-469.	12.4	129
35	Photocatalyzed oxidation pathways of 2,4-dichlorophenol by CdS in basic and acidic aqueous solutions. Water Research, 1995, 29, 745-756.	11.3	128
36	Electrocatalytic ammonia oxidation over a nickel foam electrode: Role of Ni(OH)2(s)-NiOOH(s) nanocatalysts. Electrochimica Acta, 2018, 263, 261-271.	5.2	126

#	Article	IF	Citations
37	Responses of algae to photocatalytic nano-TiO2 particles with an emphasis on the effect of particle size. Chemical Engineering Journal, 2011, 170, 538-546.	12.7	117
38	Treatment of Metal Industrial Wastewater by Fly Ash and Cement Fixation. Journal of Environmental Engineering, ASCE, 1994, 120, 1470-1487.	1.4	115
39	Synthesis of visible-light sensitive M–BiVO4 (M=Ag, Co, and Ni) for the photocatalytic degradation of organic pollutants. Separation and Purification Technology, 2011, 77, 275-282.	7.9	114
40	The electrochemical reduction of nitrate over micro-architectured metal electrodes with stainless steel scaffold. Applied Catalysis B: Environmental, 2016, 180, 199-209.	20.2	112
41	Adsorption of Cr(VI) onto TiO2 from dilute aqueous solutions. Water Science and Technology, 1997, 35, 55-62.	2.5	110
42	Factors affecting the photocatalytic degradation of dichlorvos over titanium dioxide supported on glass. Journal of Photochemistry and Photobiology A: Chemistry, 1993, 76, 103-110.	3.9	108
43	Hydrogen peroxide-assisted photocatalytic oxidation of phenolic compounds. Applied Catalysis B: Environmental, 2005, 59, 99-104.	20.2	108
44	Adsorption Characteristics of Dye onto Sludge Particulates. Journal of Colloid and Interface Science, 1998, 208, 518-528.	9.4	107
45	Electrochemical nitrate reduction as affected by the crystal morphology and facet of copper nanoparticles supported on nickel foam electrodes (Cu/Ni). Chemical Engineering Journal, 2020, 383, 123157.	12.7	107
46	Efficient sonochemical degradation of perfluorooctanoic acid using periodate. Ultrasonics Sonochemistry, 2016, 31, 499-505.	8.2	106
47	Separation of furans and carboxylic acids from sugars in dilute acid rice straw hydrolyzates by nanofiltration. Bioresource Technology, 2010, 101, 4889-4894.	9.6	101
48	Effects of nano-TiO2 on the agronomically-relevant Rhizobium–legume symbiosis. Science of the Total Environment, 2014, 466-467, 503-512.	8.0	100
49	An activated carbon fiber cathode for the degradation of glyphosate in aqueous solutions by the Electro-Fenton mode: Optimal operational conditions and the deposition of iron on cathode on electrode reusability. Water Research, 2016, 105, 575-582.	11.3	99
50	Adsorption of Heavy Metals by Silicon and Aluminum Oxide Surfaces on Clay Minerals. Soil Science Society of America Journal, 1990, 54, 679-688.	2.2	97
51	Adsorption Characteristics of Fluoride onto Hydrous Alumina. Journal of Environmental Engineering, ASCE, 1986, 112, 1054-1069.	1.4	96
52	Humic and Fulvic Acid Adsorption by Silicon and Aluminum Oxide Surfaces on Clay Minerals. Soil Science Society of America Journal, 1991, 55, 34-42.	2.2	96
53	Effect of chlorine content of chlorinated phenols on their oxidation kinetics by Fenton's reagent. Chemosphere, 1996, 33, 1621-1635.	8.2	96
54	New Insights into Defectâ€Mediated Heterostructures for Photoelectrochemical Water Splitting. Advanced Energy Materials, 2016, 6, 1502268.	19.5	95

#	Article	IF	Citations
55	Cobalt-impregnated biochar (Co-SCG) for heterogeneous activation of peroxymonosulfate for removal of tetracycline in water. Bioresource Technology, 2019, 292, 121954.	9.6	95
56	Visible-light photodegradation of sulfamethoxazole (SMX) over Ag-P-codoped g-C3N4 (Ag-P@UCN) photocatalyst in water. Chemical Engineering Journal, 2020, 384, 123383.	12.7	94
57	Treatment of landfill leachate by Fenton's reagent in a continuous stirred tank reactor. Journal of Hazardous Materials, 2006, 136, 618-623.	12.4	93
58	Multivariate approach to the Fenton process for the treatment of landfill leachate. Journal of Hazardous Materials, 2009, 161, 1306-1312.	12.4	90
59	Separation of acetic acid from xylose by nanofiltration. Separation and Purification Technology, 2009, 67, 95-102.	7.9	87
60	The Removal of Cadmium (II) from Dilute Aqueous Solutions by Fungal Adsorbent. Water Science and Technology, 1988, 20, 369-376.	2.5	86
61	Proton competition in Cu(II) adsorption by fungal mycelia. Water Research, 1991, 25, 1365-1375.	11.3	84
62	The role of iron on the degradation and mineralization of organic compounds using conventional Fenton and photo-Fenton processes. Chemical Engineering Journal, 2009, 155, 637-646.	12.7	84
63	Removal of Chlorophenols from Water by Photocatalytic Oxidation. Water Science and Technology, 1991, 23, 377-387.	2.5	83
64	Activation of persulfate by CoO nanoparticles loaded on 3D mesoporous carbon nitride (CoO@meso-CN) for the degradation of methylene blue (MB). Science of the Total Environment, 2019, 675, 531-541.	8.0	83
65	Perchlorate removal by activated carbon adsorption. Separation and Purification Technology, 2010, 70, 329-337.	7.9	81
66	Effects of pre-ozonation on the removal of THM precursors by coagulation. Science of the Total Environment, 2009, 407, 5735-5742.	8.0	79
67	Adsorption characteristics of ammonium ion onto hydrous biochars in dilute aqueous solutions. Bioresource Technology, 2019, 272, 465-472.	9.6	79
68	Adsorption characteristics of polyacetic amino acids onto hydrous Î ³ -Al2O3. Journal of Colloid and Interface Science, 1985, 105, 197-215.	9.4	78
69	Zero-Valent Iron Pretreatment for Enhancing the Biodegradability of Azo Dyes. Water Environment Research, 2002, 74, 221-225.	2.7	77
70	Ozonation of activated carbon and its effects on the adsorption of VOCs exemplified by methylethylketone and benzene. Chemosphere, 2002, 47, 267-275.	8.2	77
71	Degradation of phthalate esters in marine sediments by persulfate over Fe–Ce/biochar composites. Chemical Engineering Journal, 2020, 384, 123301.	12.7	77
72	The removal of substituted phenols by a photocatalytic oxidation process with cadmium sulfide. Water Research, 1990, 24, 543-550.	11.3	75

#	Article	IF	Citations
73	The photocatalytic oxidation of sulfur-containing organic compounds using cadmium sulfide and the effect on CdS photocorrosion. Water Research, 1991, 25, 1273-1278.	11.3	75
74	The Synergistic Effect of Photoelectrochemical (PEC) Reactions Exemplified by Concurrent Perfluorooctanoic acid (PFOA) Degradation and Hydrogen Generation over Carbon and Nitrogen codoped TiO 2 Nanotube Arrays (C-N-TNTAs) photoelectrode. Applied Catalysis B: Environmental, 2017, 209, 437-446.	20.2	72
75	Combined ultrasound and Fenton (US-Fenton) process for the treatment of ammunition wastewater. Journal of Hazardous Materials, 2013, 244-245, 403-411.	12.4	71
76	The degradation of phthalate esters in marine sediments by persulfate over iron–cerium oxide catalyst. Science of the Total Environment, 2019, 696, 133973.	8.0	71
77	Removal of arsenic and humic substances (HSs) by electro-ultrafiltration (EUF). Journal of Hazardous Materials, 2005, 122, 171-176.	12.4	70
78	Assessing the fouling mechanisms of high-pressure nanofiltration membrane using the modified Hermia model and the resistance-in-series model. Separation and Purification Technology, 2011, 79, 329-336.	7.9	69
79	Oxidation of ammonia in dilute aqueous solutions over graphite-supported \hat{l}_{\pm} - and \hat{l}^{2} -lead dioxide electrodes (PbO2@G). Electrochimica Acta, 2017, 257, 444-454.	5.2	69
80	The surface acidity of hydrous CdS(s). Journal of Colloid and Interface Science, 1987, 117, 431-441.	9.4	68
81	Selective adsorption of oxyanions on activated carbon exemplified by Filtrasorb 400 (F400). Separation and Purification Technology, 2011, 77, 294-300.	7.9	68
82	Polymer-assisted synthesis of hydroxyapatite nanoparticle. Materials Science and Engineering C, 2009, 29, 819-822.	7.3	67
83	Effects of nano-ZnO on the agronomically relevant Rhizobium –legume symbiosis. Science of the Total Environment, 2014, 497-498, 78-90.	8.0	67
84	In-situ electrochemical formation of nickel oxyhydroxide (NiOOH) on metallic nickel foam electrode for the direct oxidation of ammonia in aqueous solution. Electrochimica Acta, 2018, 281, 410-419.	5.2	66
85	Chromium leaching behavior in soil derived from chromite ore processing waste. Science of the Total Environment, 1994, 154, 71-86.	8.0	65
86	Recovery of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) from dilute water solution by foam flotation. Separation and Purification Technology, 2017, 173, 280-285.	7.9	63
87	The short-term toxic effects of TiO2 nanoparticles toward bacteria through viability, cellular respiration, and lipid peroxidation. Environmental Science and Pollution Research, 2015, 22, 17917-17924.	5.3	62
88	Concurrent photoelectrochemical reduction of CO2 and oxidation of methyl orange using nitrogen-doped TiO2. Applied Catalysis B: Environmental, 2012, 123-124, 414-423.	20.2	61
89	A seasonal observation on the distribution of engineered nanoparticles in municipal wastewater treatment systems exemplified by TiO2 and ZnO. Science of the Total Environment, 2018, 625, 1321-1329.	8.0	61
90	Biochar derived from red algae for efficient remediation of 4-nonylphenol from marine sediments. Chemosphere, 2020, 254, 126916.	8.2	61

#	Article	IF	Citations
91	The effect of chlorine position of chlorinated phenols on their dechlorination kinetics by Fenton's reagent. Waste Management, 1995, 15, 615-622.	7.4	60
92	Identifying the rejection mechanism for nanofiltration membranes fouled by humic acid and calcium ions exemplified by acetaminophen, sulfamethoxazole, and triclosan. Journal of Hazardous Materials, 2012, 221-222, 19-27.	12.4	59
93	Mode of electrochemical deposition on the structure and morphology of bimetallic electrodes and its effect on nitrate reduction toward nitrogen selectivity. Applied Catalysis B: Environmental, 2019, 257, 117909.	20.2	59
94	Sonochemical decomposition of dibenzothiophene in aqueous solution. Water Research, 2001, 35, 4370-4378.	11.3	58
95	Adsorption of arsenic(V) onto fly ash: A speciation-based approach. Chemosphere, 2008, 72, 381-388.	8.2	58
96	Responses of Ceriodaphnia dubia to TiO2 and Al2O3 nanoparticles: A dynamic nano-toxicity assessment of energy budget distribution. Journal of Hazardous Materials, 2011, 187, 502-508.	12.4	57
97	Manipulating the crystalline morphology and facet orientation of copper and copper-palladium nanocatalysts supported on stainless steel mesh with the aid of cationic surfactant to improve the electrochemical reduction of nitrate and N2 selectivity. Applied Catalysis B: Environmental, 2020, 273, 119053.	20.2	57
98	Activation of percarbonate by water treatment sludge–derived biochar for the remediation of PAH-contaminated sediments. Environmental Pollution, 2020, 265, 114914.	7.5	57
99	Adsorption of Zn(II) onto hydrous aluminosilicates. Journal of Colloid and Interface Science, 1989, 131, 289-306.	9.4	56
100	Comparison of Acid and Microbial Leaching for Metal Removal from Municipal Sludge. Water Science and Technology, 1992, 26, 197-206.	2.5	55
101	Electro-photocatalytic degradation of acid orange II using a novel TiO2/ACF photoanode. Science of the Total Environment, 2009, 407, 2431-2439.	8.0	55
102	Photoeletrochemical generation of hydrogen over carbon-doped TiO2 photoanode. Applied Catalysis B: Environmental, 2009, 92, 41-49.	20.2	55
103	Adsorption of phosphate at the hydrous γ-Al2O3-electrolyte interface. Journal of Colloid and Interface Science, 1975, 53, 178-186.	9.4	54
104	Modeling heavy metal uptake by sludge particulates in the presence of dissolved organic matter. Water Research, 2003, 37, 4835-4842.	11.3	53
105	Manipulating the morphology of 3D flower-like CoMn2O4 bimetallic catalyst for enhancing the activation of peroxymonosulfate toward the degradation of selected persistent pharmaceuticals in water. Chemical Engineering Journal, 2022, 436, 135244.	12.7	52
106	Stability of oxidized single-walled carbon nanotubes in the presence of simple electrolytes and humic acid. Carbon, 2010, 48, 4527-4534.	10.3	51
107	CoO-3D ordered mesoporous carbon nitride (CoO@mpgCN) composite as peroxymonosulfate activator for the degradation of sulfamethoxazole in water. Journal of Hazardous Materials, 2021, 401, 123326.	12.4	51
108	Effects of Dissolved Organic Matter and pH on Heavy Metal Uptake by Sludge Particulates Exemplified by Copper(II) and Nickel(II): Three-Variable Model. Water Environment Research, 1999, 71, 139-147.	2.7	50

#	Article	IF	Citations
109	Removal of humic substances (HS) from water by electro-microfiltration (EMF). Water Research, 2006, 40, 1783-1794.	11.3	50
110	Preparation of graphene oxide–chitosan composite and adsorption performance for uranium. Journal of Radioanalytical and Nuclear Chemistry, 2017, 313, 371-378.	1.5	50
111	A visible-light sensitive MoSSe nanohybrid for the photocatalytic degradation of tetracycline, oxytetracycline, and chlortetracycline. Journal of Colloid and Interface Science, 2022, 616, 67-80.	9.4	50
112	Photocatalytic activity of pulsed laser deposited TiO2 thin films. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 151, 133-139.	3.5	49
113	Responses of Algal Cells to Engineered Nanoparticles Measured as Algal Cell Population, Chlorophyll a, and Lipid Peroxidation: Effect of Particle Size and Type. Journal of Nanotechnology, 2012, 2012, 1-12.	3.4	48
114	The removal of polycyclic aromatic hydrocarbons (PAHs) from marine sediments using persulfate over a nano-sized iron composite of magnetite and carbon black activator. Journal of Environmental Chemical Engineering, 2020, 8, 104440.	6.7	48
115	Peroxymonosulfate activation by a metal-free biochar for sulfonamide antibiotic removal in water and associated bacterial community composition. Bioresource Technology, 2022, 343, 126082.	9.6	48
116	Effect of iron oxide removal on heavy metal sorption by acid subsoils. Water, Air, and Soil Pollution, 1986, 27, 379-389.	2.4	47
117	Indirect electrochemical reduction of perchlorate and nitrate in dilute aqueous solutions at the Ti–water interface. Separation and Purification Technology, 2009, 67, 127-134.	7.9	47
118	Chemical Interactions between Cr(VI) and Hydrous Concrete Particles. Environmental Science & Emp; Technology, 1996, 30, 371-376.	10.0	46
119	Algae-derived metal-free boron-doped biochar as an efficient bioremediation pretreatment for persistent organic pollutants in marine sediments. Journal of Cleaner Production, 2022, 336, 130448.	9.3	46
120	Surface Physical-Chemical Characteristics of Sludge Particulates. Water Environment Research, 2000, 72, 545-553.	2.7	45
121	Evaluating and elucidating the formation of nitrogen-contained disinfection by-products during pre-ozonation and chlorination. Chemosphere, 2010, 80, 327-333.	8.2	44
122	The effect of complex formation on the adsorption characteristics of heavy metals. Environment International, 1979, 2, 145-155.	10.0	42
123	The adsorption characteristics of some heavy metal ions onto hydrous CdS(s) surface. Journal of Colloid and Interface Science, 1989, 128, 245-257.	9.4	42
124	Thermostability of Nano-TiO2 and its photocatalytic activity Â. Reaction Kinetics and Catalysis Letters, 2006, 89, 63-69.	0.6	42
125	Effects of biochar on catalysis treatment of 4-nonylphenol in estuarine sediment and associated microbial community structure. Environmental Pollution, 2021, 268, 115673.	7.5	42
126	Degradation of organic contaminants in marine sediments by peroxymonosulfate over LaFeO3 nanoparticles supported on water caltrop shell-derived biochar and the associated microbial community responses. Journal of Hazardous Materials, 2021, 420, 126553.	12.4	42

#	Article	IF	Citations
127	Adsorption characteristics of dichlorvos onto hydrous titanium dioxide surface. Water Research, 1996, 30, 1670-1676.	11.3	41
128	Enhanced Biodegradation of Azo Dyes Using an Integrated Elemental Iron-Activated Sludge System: I. Evaluation of System Performance. Water Environment Research, 2006, 78, 19-25.	2.7	41
129	The degradation of di-(2-ethylhexyl) phthalate, DEHP, in sediments using percarbonate activated by seaweed biochars and its effects on the benthic microbial community. Journal of Cleaner Production, 2021, 292, 126108.	9.3	41
130	Heavy metal removal by activated sludge: influence of Nocardia amarae. Chemosphere, 2002, 46, 137-142.	8.2	40
131	Interactions of silver with wastewater constituents. Water Research, 2003, 37, 4444-4452.	11.3	40
132	Photoelectrochemical degradation of azo dye over pulsed laser deposited nitrogen-doped TiO2 thin film. Applied Catalysis B: Environmental, 2012, 125, 465-472.	20.2	40
133	A hierarchical porous adsorbent of nano-α-Fe2O3/Fe3O4 on bamboo biochar (HPA-Fe/C-B) for the removal of phosphate from water. Journal of Water Process Engineering, 2018, 25, 96-104.	5.6	40
134	Behavior of Membrane Scaling During Crossflow Filtration in the Anaerobic MBR System. Separation Science and Technology, 2006, 41, 1265-1278.	2.5	39
135	Substitution Boosts Charge Separation for High Solar-Driven Photocatalytic Performance. ACS Applied Materials & Early; Interfaces, 2016, 8, 26783-26793.	8.0	39
136	Performance evaluation of integrated adsorption-nanofiltration system for emerging compounds removal: Exemplified by caffeine, diclofenac and octylphenol. Journal of Environmental Management, 2019, 231, 121-128.	7.8	39
137	The Role of Biochar in Regulating the Carbon, Phosphorus, and Nitrogen Cycles Exemplified by Soil Systems. Sustainability, 2021, 13, 5612.	3.2	39
138	Comparisons of Polymeric and Conventional Coagulants in Arsenic(V) Removal. Water Environment Research, 2003, 75, 308-313.	2.7	37
139	The reduction of perchlorate by hydrogenation catalysts. Applied Catalysis B: Environmental, 2008, 81, 78-87.	20.2	37
140	The responses of Ceriodaphnia dubia toward multi-walled carbon nanotubes: Effect of physical–chemical treatment. Carbon, 2011, 49, 1672-1679.	10.3	37
141	Fe-Cu bimetallic catalyst for the degradation of hazardous organic chemicals exemplified by methylene blue in Fenton-like reaction. Journal of Environmental Chemical Engineering, 2020, 8, 104139.	6.7	37
142	Adsorption Behavior of Cu(II) onto Sludge Particulate Surfaces. Journal of Environmental Engineering, ASCE, 1987, 113, 285-299.	1.4	36
143	Removal of arsenic from groundwater by electro-ultrafiltration. Desalination, 2008, 234, 402-408.	8.2	36
144	Looking for engineered nanoparticles (ENPs) in wastewater treatment systems: Qualification and quantification aspects. Science of the Total Environment, 2017, 590-591, 809-817.	8.0	36

#	Article	IF	Citations
145	A dual TiO2/Ti-stainless steel anode for the degradation of orange G in a coupling photoelectrochemical and photo-electro-Fenton system. Science of the Total Environment, 2019, 659, 221-229.	8.0	36
146	Synthesis of a CNT-grafted TiO2nanocatalyst and its activity triggered by a DC voltage. Nanotechnology, 2007, 18, 465607.	2.6	34
147	Catalytic reduction of perchlorate by H2 gas in dilute aqueous solutions. Separation and Purification Technology, 2008, 60, 14-21.	7.9	34
148	Degradation of mefenamic acid from aqueous solutions by the ozonation and O3/UV processes. Separation and Purification Technology, 2012, 98, 123-129.	7.9	34
149	Facile preparation and adsorption performance of graphene oxide-manganese oxide composite for uranium. Scientific Reports, 2018, 8, 9058.	3.3	34
150	Phenanthrene removal in unsaturated soils treated by electrokinetics with different surfactantsâ€"Triton X-100 and rhamnolipid. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 348, 157-163.	4.7	33
151	The removal of phosphate by thermally treated red mud from water: The effect of surface chemistry on phosphate immobilization. Chemosphere, 2020, 247, 125867.	8.2	32
152	Production and characterization of a high value-added seaweed-derived biochar: Optimization of pyrolysis conditions and evaluation for sediment treatment. Journal of Analytical and Applied Pyrolysis, 2021, 155, 105071.	5.5	32
153	N-doping modified zeolitic imidazole Framework-67 (ZIF-67) for enhanced peroxymonosulfate activation to remove ciprofloxacin from aqueous solution. Separation and Purification Technology, 2022, 288, 120719.	7.9	32
154	Removal of some heavy metals by mordenite. Environmental Technology Letters, 1989, 10, 863-874.	0.4	31
155	Effect of metal additives on the physico-chemical characteristics of activated carbon exemplified by benzene and acetic acid adsorption. Carbon, 1999, 37, 1919-1928.	10.3	31
156	In Situ Removal of 2-Chlorophenol from Unsaturated Soils by Ozonation. Environmental Science & Environmental & Environmental Science & Environmental & Environ	10.0	31
157	Remediation and stimulation of selected chlorinated organic solvents in unsaturated soil by a specific enhanced electrokinetics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 287, 86-93.	4.7	31
158	Efficacy and cytotoxicity of engineered ferromanganese-bearing sludge-derived biochar for percarbonate-induced phthalate ester degradation. Journal of Hazardous Materials, 2022, 422, 126922.	12.4	31
159	N-doped metal-free biochar activation of peroxymonosulfate for enhancing the degradation of antibiotics sulfadiazine from aquaculture water and its associated bacterial community composition. Journal of Environmental Chemical Engineering, 2022, 10, 107172.	6.7	31
160	Removal of Phenols from Water by a Photocatalytic Oxidation Process. Water Science and Technology, 1989, 21, 455-464.	2.5	30
161	The adsorption characteristics of fluoride on commercial activated carbon treated with quaternary ammonium salts (Quats). Science of the Total Environment, 2019, 693, 133605.	8.0	30
162	Adsorption of Zn(II) onto hydrous aluminosilicates in the presence of EDTA. Water Research, 1988, 22, 1001-1009.	11.3	29

#	Article	IF	CITATIONS
163	Adsorption of some substituted phenols onto hydrous ZnS(s). Journal of Colloid and Interface Science, 1992, 153, 167-176.	9.4	29
164	Cr(VI) Adsorption onto Hydrous Concrete Particles from Groundwater. Journal of Environmental Engineering, ASCE, 2001, 127, 1124-1131.	1.4	29
165	Preliminary studies of the oxidation of arsenic(III) by potassium ferrate. International Journal of Environment and Pollution, 2002, 18, 91.	0.2	29
166	Fenton process for degradation of selected chlorinated aliphatic hydrocarbons exemplified by trichloroethylene, $1,1$ -dichloroethylene and chloroform. Frontiers of Environmental Science and Engineering in China, 2008, $2,397$ -409.	0.8	29
167	Electrodialytically assisted catalytic reduction (EDACR) of perchlorate in dilute aqueous solutions. Separation and Purification Technology, 2008, 59, 333-341.	7.9	29
168	Photoelectrochemical degradation of dye wastewater on TiO2-coated titanium electrode prepared by electrophoretic deposition. Separation and Purification Technology, 2016, 165, 145-153.	7.9	28
169	Inhibition of bacteria by photocatalytic nano-TiO2 particles in the absence of light. International Journal of Environmental Science and Technology, 2015, 12, 2987-2996.	3.5	27
170	Characterization of titanium dioxide nanoparticle removal in simulated drinking water treatment processes. Science of the Total Environment, 2017, 601-602, 886-894.	8.0	27
171	Electrochemical degradation of oxalic acid over highly reactive nano-textured \hat{l}^3 - and $\hat{l}\pm$ -MnO2/carbon electrode fabricated by KMnO4 reduction on loofah sponge-derived active carbon. Journal of Hazardous Materials, 2019, 379, 120759.	12.4	27
172	Exposure of Goniopora columna to polyethylene microplastics (PE-MPs): Effects of PE-MP concentration on extracellular polymeric substances and microbial community. Chemosphere, 2022, 297, 134113.	8.2	27
173	Electrochemical analysis of naproxen in water using poly(l-serine)-modified glassy carbon electrode. Chemosphere, 2020, 254, 126686.	8.2	26
174	Adsorption of some substituted phenols onto hydrous CdS(s). Langmuir, 1990, 6, 857-862.	3.5	25
175	Metal-free carbocatalysts derived from macroalga biomass (Ulva lactuca) for the activation of peroxymonosulfate toward the remediation of polycyclic aromatic hydrocarbons laden marine sediments and its impacts on microbial community. Environmental Research, 2022, 208, 112782.	7.5	25
176	A simplified method for elucidating the effect of size exclusion on nanofiltration membranes. Separation and Purification Technology, 2012, 85, 1-7.	7.9	24
177	Tuning the adsorption capability of multi-walled carbon nanotubes to polar and non-polar organic compounds by surface oxidation. Separation and Purification Technology, 2013, 117, 98-103.	7.9	24
178	Teratogenic responses of zebrafish embryos to decabromodiphenyl ether (BDE-209) in the presence of nano-SiO2 particles. Chemosphere, 2017, 178, 449-457.	8.2	24
179	Electro-sorption of ammonium ion onto nickel foam supported highly microporous activated carbon prepared from agricultural residues (dried Luffa cylindrica). Science of the Total Environment, 2019, 673, 296-305.	8.0	24
180	Activation of peroxymonosulfate by nitrogen-doped carbocatalysts derived from brown algal (Sargassum duplicatum) for the degradation of polycyclic aromatic hydrocarbons in marine sediments. Journal of Environmental Chemical Engineering, 2021, 9, 106420.	6.7	24

#	Article	IF	Citations
181	PHOTOCATALYTIC MINERALIZATION OF TOXIC CHEMICALS WITH ILLUMINATED Ti02. Chemical Engineering Communications, 1995, 139, 1-13.	2.6	23
182	Separation of nano-sized colloidal particles using cross-flow electro-filtration. Separation and Purification Technology, 2007, 58, 138-147.	7.9	23
183	Photoassisted reduction of metal ions and organic dye by titanium dioxide nanoparticles in aqueous solution under anoxic conditions. Science of the Total Environment, 2010, 408, 3334-3341.	8.0	23
184	The role of fluoroaluminate complexes on the adsorption of fluoride onto hydrous alumina in aqueous solutions. Journal of Colloid and Interface Science, 2020, 561, 275-286.	9.4	23
185	Assessing the potential effect of extreme weather on water quality and disinfection by-product formation using laboratory simulation. Water Research, 2020, 170, 115296.	11.3	23
186	Adsorption characteristics of tetracycline onto particulate polyethylene in dilute aqueous solutions. Environmental Pollution, 2021, 285, 117398.	7.5	23
187	Hydrodynamic cavitation activation of persulfate for the degradation of polycyclic aromatic hydrocarbons in marine sediments. Environmental Pollution, 2021, 286, 117245.	7.5	23
188	Performance and bacterial community dynamics of lignin-based biochar-coupled calcium peroxide pretreatment of waste-activated sludge for the removal of 4-nonylphenol. Bioresource Technology, 2022, 354, 127166.	9.6	23
189	Enhanced Biodegradation of Azo Dyes Using an Integrated Elemental Iron-Activated Sludge System: II. Effects of Physical-Chemical Parameters. Water Environment Research, 2006, 78, 26-30.	2.7	22
190	Preparation of a magnetic reduced-graphene oxide/tea waste composite for high-efficiency sorption of uranium. Scientific Reports, 2019, 9, 6471.	3.3	22
191	Loofah-derived activated carbon supported on nickel foam (AC/Ni) electrodes for the electro-sorption of ammonium ion from aqueous solutions. Chemosphere, 2020, 242, 125259.	8.2	22
192	Green synthesis of nano-silver–titanium nanotube array (Ag/TNA) composite for concurrent ibuprofen degradation and hydrogen generation. Chemosphere, 2021, 264, 128407.	8.2	22
193	Remediation of contaminated dredged harbor sediments by combining hydrodynamic cavitation, hydrocyclone, and persulfate oxidation process. Journal of Hazardous Materials, 2021, 420, 126594.	12.4	22
194	Catalytic degradation of chlorpheniramine over GO-Fe3O4 in the presence of H2O2 in water: The synergistic effect of adsorption. Science of the Total Environment, 2020, 736, 139468.	8.0	22
195	Activated Carbon for Treatment of Cadmium Wastewater. American Society of Civil Engineers, Journal of the Environmental Engineering Division, 1982, 108, 1280-1299.	0.3	22
196	Recovery of EDTA from Power Plant Boiler Chemical Cleaning Wastewater. Journal of Environmental Engineering, ASCE, 2000, 126, 919-924.	1.4	21
197	Enhancing the separation of nano-sized particles in low-salt suspensions by electrically assisted cross-flow filtration. Separation and Purification Technology, 2007, 54, 170-177.	7.9	21
198	A solar cell driven electrochemical process for the concurrent reduction of carbon dioxide and degradation of azo dye in dilute KHCO3 electrolyte. Separation and Purification Technology, 2013, 117, 3-11.	7.9	21

#	Article	IF	Citations
199	Functionalized activated carbon for the adsorptive removal of perchlorate from water solutions. Frontiers of Chemical Science and Engineering, 2015, 9, 194-208.	4.4	21
200	Hazardous waste treatment technologies. Water Environment Research, 2019, 91, 1177-1198.	2.7	21
201	Variables governing the initial stages of the synergisms of ultrasonic treatment of biochar in water with dissolved CO2. Fuel, 2019, 235, 1131-1145.	6.4	21
202	Degradation of 4-nonylphenol in marine sediments using calcium peroxide activated by water hyacinth (Eichhornia crassipes)-derived biochar. Environmental Research, 2022, 211, 113076.	7.5	21
203	Acid characteristics of dissolved organic matter in wastewater. Water Environment Research, 1998, 70, 1041-1048.	2.7	20
204	Reaction pathways and kinetic modeling for sonochemical decomposition of benzothiophene. Korean Journal of Chemical Engineering, 2003, 20, 1045-1053.	2.7	20
205	Predicting metals partitioning in wastewater treatment plant influents. Water Research, 2006, 40, 1333-1340.	11.3	20
206	Enhancing electrochemical nitrate reduction toward dinitrogen selectivity on Sn-Pd bimetallic electrodes by surface structure design. Applied Catalysis A: General, 2020, 606, 117809.	4.3	20
207	A Z-scheme NiCo ₂ O ₄ /S codoped 1D g-C ₃ N ₄ heterojunction for solar-light-sensitive photocatalytic degradation of antibiotics in aqueous solutions exemplified by tetracycline. Environmental Science: Nano, 2022, 9, 229-242.	4.3	20
208	Ecological responses of coral reef to polyethylene microplastics in community structure and extracellular polymeric substances. Environmental Pollution, 2022, 307, 119522.	7. 5	20
209	Removal of 4-nonylphenol in activated sludge by peroxymonosulfate activated with sorghum distillery residue-derived biochar. Bioresource Technology, 2022, 360, 127564.	9.6	20
210	Role of Fe(III) in metal complex adsorption by hydrous solids. Water Research, 1987, 21, 757-764.	11.3	19
211	Photo-oxidative dissolution of CdS(s): the effect of complexing agents. Chemosphere, 1995, 31, 3093-3104.	8.2	19
212	Interactions between nano-TiO2 particles and algal cells at moderate particle concentration. Frontiers of Chemical Science and Engineering, 2015, 9, 242-257.	4.4	19
213	Nanostructure-induced colored TiO ₂ array photoelectrodes with full solar spectrum harvesting. Journal of Materials Chemistry A, 2017, 5, 3145-3151.	10.3	19
214	Application of mathematical modeling and electrochemical iron dosing strategies to improve the treatment performance of the electro-Fenton process. Journal of Cleaner Production, 2018, 181, 437-448.	9.3	19
215	The recovery of sulfuric acid from spent piranha solution over a dimensionally stable anode (DSA) Ti-RuO2 electrode. Journal of Hazardous Materials, 2021, 406, 124658.	12.4	19
216	Hazardous Waste Treatment Technologies. Water Environment Research, 2016, 88, 1467-1486.	2.7	18

#	Article	IF	CITATIONS
217	Graphene Oxide-Cellulose Composite for the Adsorption of Uranium(VI) from Dilute Aqueous Solutions. Journal of Hazardous, Toxic, and Radioactive Waste, 2018, 22, 04017029.	2.0	18
218	Preparation and characterization of functionalized poly(vinyl chloride) membranes for selective separation of perchlorate from water. Journal of Membrane Science, 2015, 476, 561-570.	8.2	17
219	Adsorption characteristics of nano-TiO2 onto zebrafish embryos and its impacts on egg hatching. Chemosphere, 2016, 154, 109-117.	8.2	17
220	Application of red-mud based ceramic media for phosphate uptake from water and evaluation of their effects on growth of Iris latifolia seedling. Science of the Total Environment, 2019, 688, 724-731.	8.0	17
221	Electrolytic characteristics of ammonia oxidation in real aquaculture water using nano-textured mono-and bimetal oxide catalysts supported on graphite electrodes. Electrochimica Acta, 2020, 360, 136990.	5.2	17
222	Effect of pH on Cr(VI) Leaching from Soil Enriched in Chromite ore Processing Residue. Environmental Geochemistry and Health, 2001, 23, 207-211.	3.4	16
223	Different modes of synergistic toxicities between metam/copper (II) and metam/zinc (II) in HepG2 cells: apoptosis vs. necrosis. Environmental Toxicology, 2016, 31, 1964-1973.	4.0	16
224	Uptake of BDE-209 on zebrafish embryos as affected by SiO2 nanoparticles. Chemosphere, 2018, 205, 570-578.	8.2	16
225	Suppression of polycyclic aromatic hydrocarbon formation during pyrolytic production of lignin-based biochar via nitrogen and boron co-doping. Bioresource Technology, 2022, 355, 127246.	9.6	16
226	An oxidation kinetic model of unsaturated chlorinated aliphatic compounds by Fenton's reagent. Journal of Environmental Science and Health Part A: Environmental Science and Engineering, 1996, 31, 2755-2775.	0.1	15
227	Kinetics of the degradation of 2-chlorophenol by ozonation at pH 3. Journal of Hazardous Materials, 2007, 141, 140-147.	12.4	15
228	Hydrogen generation under visible light using nitrogen doped titania anodes. Journal of Applied Physics, 2010, 107, .	2.5	15
229	Indirect Electrochemical Oxidation of Chlorophenols in Dilute Aqueous Solutions. Journal of Environmental Engineering, ASCE, 2012, 138, 375-385.	1.4	15
230	Nano-hematite bagasse composite (n -HBC) for the removal of Pb(II) from dilute aqueous solutions. Journal of Water Process Engineering, 2018, 21, 69-76.	5.6	15
231	Adsorption of Nonylphenol to Multi-Walled Carbon Nanotubes: Kinetics and Isotherm Study. Applied Sciences (Switzerland), 2018, 8, 2295.	2.5	15
232	REMOVAL OF CADMIUM (II) FROM DILUTE AQUEOUS SOLUTIONS BY FUNGAL BIOMASS. Particulate Science and Technology, 1988, 6, 405-419.	2.1	14
233	Chemical substitution reaction between Cu(II) and Hg(II) and hydrous CdS(s). Water Research, 1989, 23, 1527-1534.	11.3	14
234	Hazardous Waste Treatment Technologies. Water Environment Research, 2008, 80, 1654-1708.	2.7	14

#	Article	IF	Citations
235	The effect of crystal phase of manganese oxide on the capacitive deionization of simple electrolytes. Science of the Total Environment, 2019, 675, 31-40.	8.0	14
236	Toward concurrent organics removal and potential hydrogen production in wastewater treatment: Photoelectrochemical decolorization of methylene blue over hematite electrode in the presence of Mn(II). Applied Catalysis B: Environmental, 2019, 244, 140-149.	20.2	14
237	Mechanistic Aspects of the Photocatalytic Oxidation of Phenol in Aqueous Solutions. ACS Symposium Series, 1990, , 12-39.	0.5	13
238	Regeneration of spent carbon nanotubes by electrochemical oxidation over RuO 2 /Ti electrode. Separation and Purification Technology, 2017, 178, 207-214.	7.9	13
239	Characteristics of elemental carbon overlayers over hematite electrodes prepared by electrodeposition with organic acid additives. Applied Catalysis B: Environmental, 2017, 207, 1-8.	20.2	13
240	Electrochemical in-situ hydrogen peroxide generation in a packed-bed reactor for Fenton oxidation of p-nitrophenol in aqueous solution. Chemical Engineering Research and Design, 2019, 123, 161-168.	5.6	13
241	Electrochemically-driven dosing of iron (II) for autonomous electro-Fenton processes with in situ generation of H2O2. Journal of Electroanalytical Chemistry, 2020, 856, 113639.	3.8	13
242	Transformation of copper oxide nanoparticles as affected by ionic strength and its effects on the toxicity and bioaccumulation of copper in zebrafish embryo. Ecotoxicology and Environmental Safety, 2021, 225, 112759.	6.0	13
243	REMOVAL OF PHENOLS FROM WATER BY A PHOTOCATALYTIC OXIDATION PROCESS. , 1988, , 455-464.		12
244	Photo-oxidative dissolution of CdS(s) in the presence of heavy metal ions. Chemosphere, 1992, 24, 281-290.	8.2	12
245	The synthesis, characterization, and application of a platinum modified graphite electrode (Pt/G) exemplified by chloride oxidation. Separation and Purification Technology, 2015, 156, 961-971.	7.9	12
246	Combustion operating conditions for municipal Waste-to-Energy facilities in the U.S Waste Management, 2021, 132, 124-132.	7.4	12
247	The electrosorption characteristics of simple aqueous ions on loofah-derived activated carbon decorated with manganese dioxide polymorphs: The effect of pseudocapacitance and beyond. Chemical Engineering Journal, 2021, 425, 130606.	12.7	12
248	Mesoporous zirconium pyrophosphate for the adsorption of fluoride from dilute aqueous solutions. Chemical Engineering Journal, 2022, 427, 132034.	12.7	12
249	Influence of Algae Age and Population on the Response to TiO2 Nanoparticles. International Journal of Environmental Research and Public Health, 2018, 15, 585.	2.6	11
250	A kinetic model describing photocatalytic oxidation using illuminated semiconductors. Chemosphere, 1993, 26, 1119-1135.	8.2	10
251	Hazardous wastes treatment technologies. Water Environment Research, 2020, 92, 1833-1860.	2.7	10
252	Ozonation of pentachlorophenol in unsaturated soils. Journal of Contaminant Hydrology, 2008, 98, 75-84.	3.3	9

#	Article	IF	Citations
253	Modeling the formation and assessing the risk of disinfection by-products in water distribution systems. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2010, 45, 1185-1194.	1.7	9
254	Specific chemical interactions between metal ions and biological solids exemplified by sludge particulates. Bioresource Technology, 2014, 160, 32-42.	9.6	9
255	Catalytic Electrochemical Reduction of Perchlorate over Rh-Cu/SS and Rh-Ru/SS Electrodes in Dilute Aqueous Solution. Journal of Environmental Engineering, ASCE, 2019, 145, .	1.4	9
256	A poly-(L-serine)/reduced graphene oxide–Nafion supported on glassy carbon (PLS/rGOâ^'Nafion/GCE) electrode for the detection of naproxen in aqueous solutions. Environmental Science and Pollution Research, 2022, 29, 12450-12461.	5.3	9
257	<i>Z</i> -Scheme MoS ₂ /TiO ₂ /graphene nanohybrid photocatalysts for visible light-induced degradation for highly efficient water disinfection and antibacterial activity. New Journal of Chemistry, 2022, 46, 14159-14169.	2.8	9
258	Photo-oxidative dissolution of CdS(s): The effect of Pb(II) ions. Chemosphere, 1993, 27, 721-732.	8.2	8
259	Photo-oxidative dissolution of CdS(s): The effect of Cu(II) ions. Chemosphere, 1994, 28, 663-674.	8.2	8
260	Photocatalytic Degradation of 4-Chlorophenol in TiO2 Aqueous Suspensions. Advances in Chemistry Series, 1995, , 291-313.	0.6	8
261	Specific Adsorption of Co(II) and [Co(III)EDTA]- Complexes on Hydrous Oxide Surfaces., 1981,, 61-91.		8
262	The role of reversible and polarizable surface charge in the electro-sorption of NaCl electrolyte onto activated carbon-graphite electrode. Chemical Engineering Journal, 2022, 430, 132862.	12.7	8
263	Enhancing arsenic (III) removal by integrated electrocatalytic oxidation and electrosorption reactions on nano-textured bimetal composite of iron oxyhydroxide and manganese dioxide polymorphs (α-, γ-, β-, and Îμ-MnxFe1∲xO). Applied Catalysis B: Environmental, 2022, 317, 121757.	20.2	8
264	Electroosmotic Flow Rate: A Semiempirical Approach. ACS Symposium Series, 2000, , 247-266.	0.5	7
265	Hazardous Waste Treatment Technologies. Water Environment Research, 2007, 79, 1858-1902.	2.7	7
266	A polymeric membrane electrode for the detection of perchlorate in water at the sub-micro-molar level. Analytical Methods, 2013, 5, 3530.	2.7	7
267	Oxidation of Selected Polycyclic Aromatic Hydrocarbons by the Fenton's Reagent: Effect of Major Factors Including Organic Solvent. ACS Symposium Series, 2000, , 187-209.	0.5	6
268	Enhanced photoelectrochemical water splitting efficiency of hematite electrodes with aqueous metal ions as in situ homogenous surface passivation agents. Physical Chemistry Chemical Physics, 2016, 18, 29300-29307.	2.8	6
269	The electrodeless preparation of M (MÂ=ÂPt, Pd, Ru, Cu) NiCo oxide/graphite electrodes for the electrochemical inactivation ofÂEscherichia coli. Sustainable Environment Research, 2016, 26, 1-13.	4.2	6
270	Effect of Mg(II) on the Removal of Uranium from Low Radioactive Wastewater by Flocculation Using Polyacrylamide. Journal of Hazardous, Toxic, and Radioactive Waste, 2017, 21, .	2.0	6

#	Article	IF	Citations
271	THE USE OF ACTIVATED CARBON FOR CHROMIUM (VI) REMOVAL. , 1979, , 45-64.		5
272	Factors Affecting the Adsorption of Complexed Heavy Metals on Hydrous Al2O3. Water Science and Technology, 1985, 17, 1017-1028.	2.5	5
273	Effect of hydrophobicity of humic substances on electro-ultrafiltration. Desalination, 2012, 284, 128-134.	8.2	5
274	Transport characteristics and removal efficiency of copper ions in the electrodialysis process under electroconvection operation. Chemical Engineering Research and Design, 2017, 112, 235-242.	5.6	5
275	The electrochemical oxidation of chloride on Pt-Ni-Co-G electrodes and its application in in-situ disinfection of water. Chemical Engineering Journal, 2022, 428, 132069.	12.7	5
276	Stochiometry of Fenton's Reagent in the Oxidation of Chlorinated Aliphatic Organic Pollutants. Environmental Technology (United Kingdom), 1997, 18, 13-23.	2.2	5
277	Effect of cadmium sulfide characteristics on the photocatalytic oxidation of thioacetamide. Langmuir, 1991, 7, 709-713.	3.5	4
278	A Microscope System with a dual-band filter for the simultaneous enumeration of cryptosporidium parvum oocysts and sporozoites. Water Research, 2001, 35, 4231-4236.	11.3	4
279	Fouling analysis of polysulfone ultrafiltration membranes used for drinking water treatment. Water Science and Technology: Water Supply, 2011, 11, 668-674.	2.1	4
280	Graphite Supported Stainless-Steel Electrode for the Degradation of Azo Dye Orange G by Fenton Reactions: Effect of Photo-Irradiation. Journal of Environmental Engineering, ASCE, 2019, 145, 04018133.	1.4	4
281	Process optimization for the synthesis of ceramsites in terms of mechanical strength and phosphate adsorption capacity. Chemosphere, 2021, 278, 130239.	8.2	4
282	Adsorption of phenols onto hydrous ZnS(s): effect of cosolvent and temperature. Journal of Hazardous Materials, 1994, 38, 423-438.	12.4	3
283	Closure to "Treatment of Metal Industrial Wastewater by Fly Ash and Cement Fixation―by C. H. Weng and C. P. Huang. Journal of Environmental Engineering, ASCE, 1996, 122, 243-243.	1.4	3
284	Effect of pH on Metal Uptake by Anaerobic Sludge. Environmental Engineering Science, 2007, 24, 1095-1104.	1.6	3
285	Sonochemical Treatment of Wastewater Effluent for the Removal of Pathogenic Protozoa Exemplified byCryptosporidium. Practice Periodical of Hazardous, Toxic and Radioactive Waste Management, 2007, 11, 114-122.	0.4	3
286	Integrated water management plans towards sustainability: the Taiwan experience. Water Science and Technology: Water Supply, 2007, 7, 31-40.	2.1	3
287	Nanotechnostructured Catalysts TiO2Nanoparticles for Water Purification., 2009,, 43-92.		3
288	THE REMOVAL OF FINE COAL PARTICLES FROM WATER BY FLOTATIONâ€. Chemical Engineering Communications, 1985, 35, 351-371.	2.6	2

#	Article	IF	CITATIONS
289	Reply to "Comments on â€~Adsorption of Heavy Metals by Silicon and Aluminum Oxide Surfaces on Clay Minerals'― Soil Science Society of America Journal, 1991, 55, 1509-1510.	2.2	2
290	HEAVY METAL INTERACTIONS WITH ACTIVATED SLUDGE PARTICULATES. Proceedings of the Water Environment Federation, 2002, 2002, 48-60.	0.0	2
291	Hazardous Waste Treatment Technologies. Water Environment Research, 2005, 77, 2144-2243.	2.7	2
292	Removal of Nitrate from Water by a Combination of Metallic Iron Reduction and Clinoptilolite Ion Exchange Process., 2006,, 95-110.		2
293	Hazardous Waste Treatment Technologies. Water Environment Research, 2009, 81, 1817-1835.	2.7	2
294	A New Photocatalytic System Using Steel Mesh and Cold Cathode Fluorescent Light for the Decolorization of Azo Dye Orange G. International Journal of Photoenergy, 2012, 2012, 1-9.	2.5	2
295	Hazardous Wastes Treatment Technologies. Water Environment Research, 2018, 90, 1679-1719.	2.7	2
296	Recent Advances in Carbon Dioxide Conversion: A Circular Bioeconomy Perspective. Sustainability, 2021, 13, 6962.	3.2	2
297	Trace Metal Soil Quality Criteria to Protect Ground Water. Water Science and Technology, 1992, 26, 2327-2329.	2.5	2
298	Growth and Some Enzymatic Responses of E. Coli to Photocatalytic TiO2., 0,, 319-344.		1
299	Hazardous Waste Treatment Technologies. Water Environment Research, 2010, 82, 1720-1747.	2.7	1
300	Hazardous Waste Treatment Technologies. Water Environment Research, 2011, 83, 1598-1632.	2.7	1
301	Hazardous Waste Treatment Technologies. Water Environment Research, 2015, 87, 1445-1470.	2.7	1
302	Responses of Ceriodaphnia dubia to Photocatalytic Nano-Titanium dioxide Particles., 2010,, 1-21.		1
303	Factors affecting the distribution of heavy metals in wastewater treatment processes: role of sludge particulate. Water Science and Technology, 2001, 44, 47-52.	2.5	1
304	Enhanced and inhibitory effects of mineral particulates on the utilization of glycine by Pseudomonas species. Environment International, 1987, 13, 497-503.	10.0	0
305	Hazardous Waste Treatment Technologies. Water Environment Research, 2001, 73, 1130-1192.	2.7	0
306	Hazardous Waste Treatment Technologies. Water Environment Research, 2002, 74, 903-989.	2.7	0

#	Article	IF	Citations
307	Hazardous Waste Treatment Technologies. Water Environment Research, 2006, 78, 1809-1855.	2.7	O
308	Preparation of Crystalline Nanosized Titania by Microemulsion: Evaluation of Process Variables. Journal of Advanced Oxidation Technologies, 2007, 10, .	0.5	0
309	Environmental Nanotechnology: A Nearâ€ŧerm Opportunity Assessment. Water Environment Research, 2007, 79, 939-939.	2.7	0
310	Hazardous Waste Treatment Technologies. Water Environment Research, 2012, 84, 1586-1605.	2.7	0
311	Technology for sustainable water environment. Separation and Purification Technology, 2012, 84, 1-2.	7.9	0
312	Green technologies for the purification/renovation of impaired water. Separation and Purification Technology, 2013, 117, 1-2.	7.9	0
313	Hazardous Waste Treatment Technologies. Water Environment Research, 2013, 85, 1646-1677.	2.7	0
314	Hazardous Waste Treatment Technologies. Water Environment Research, 2014, 86, 1614-1643.	2.7	0
315	Permselective membranes for wastewater treatment. , 2021, , 181-204.		0
316	Design and qualification of a bench-scale model for municipal waste-to-energy combustion. Journal of the Air and Waste Management Association, 2022, 72, 849-875.	1.9	0