Takashi Kajiwara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8428233/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Xylene Recognition in Flexible Porous Coordination Polymer by Guest-Dependent Structural Transition. ACS Applied Materials & amp; Interfaces, 2021, 13, 52144-52151.	8.0	10
2	Effect of Micropores of a Porous Coordination Polymer on the Product Selectivity in Ru ^{II} Complexâ€catalyzed CO ₂ Reduction. Chemistry - an Asian Journal, 2021, 16, 3341-3344.	3.3	4
3	Ligandâ€Assisted Electrochemical CO ₂ Reduction by Ruâ€Polypyridyl Complexes. European Journal of Inorganic Chemistry, 2020, 2020, 1814-1818.	2.0	12
4	Electrochemical behavior of a Rh(pentamethylcyclopentadienyl) complex bearing an NAD ⁺ /NADH-functionalized ligand. Dalton Transactions, 2018, 47, 5207-5216.	3.3	2
5	Design and Synthesis of Porous Coordination Polymers with Expanded Oneâ€Đimensional Channels and Strongly Lewisâ€Acidic Sites. ChemNanoMat, 2018, 4, 103-111.	2.8	11
6	Catalytic Hydride Transfer to CO ₂ Using Ru-NAD-Type Complexes under Electrochemical Conditions. Inorganic Chemistry, 2017, 56, 11066-11073.	4.0	22
7	Photochemical Reduction of Low Concentrations of CO ₂ in a Porous Coordination Polymer with a Ruthenium(II)–CO Complex. Angewandte Chemie, 2016, 128, 2747-2750.	2.0	43
8	Photochemical Reduction of Low Concentrations of CO ₂ in a Porous Coordination Polymer with a Ruthenium(II)–CO Complex. Angewandte Chemie - International Edition, 2016, 55, 2697-2700.	13.8	206
9	Dependence of crystal size on the catalytic performance of a porous coordination polymer. Chemical Communications, 2015, 51, 2728-2730.	4.1	57
10	A Systematic Study on the Stability of Porous Coordination Polymers against Ammonia. Chemistry - A European Journal, 2014, 20, 15611-15617.	3.3	73
11	One-dimensional alignment of strong Lewis acid sites in a porous coordination polymer. Chemical Communications, 2013, 49, 10459.	4.1	39
12	Preparation and properties of polyhedral oligomeric silsesquioxane–polysiloxane copolymers. Applied Organometallic Chemistry, 2010, 24, 545-550.	3.5	21
13	Synthesis and structure of ladder polymethylsilsesquioxanes from sila-functionalized cyclotetrasiloxanes. Journal of Organometallic Chemistry, 2010, 695, 1363-1369.	1.8	68
14	Preparation of free-standing films with sulfonyl group from 3-mercaptopropyl(trimethoxy)silane/1,2-bis(triethoxysilyl)ethane copolymer. Polymer Journal, 2010, 42, 684-688.	2.7	11
15	Preparation and Properties of Siloxane/Epoxy Organic-Inorganic Hybrid Thin Films, Self-Standing Films, and Bulk Bodies. Polymer Journal, 2009, 41, 541-546.	2.7	8
16	Group-4 Transition-Metal Boryl Complexes: Syntheses, Structures, Boronâ^'Metal Bonding Properties, and Application as a Polymerization Catalyst. Journal of the American Chemical Society, 2009, 131, 14162-14163.	13.7	104
17	Syntheses, Structures, and Reactivities of Borylcopper and â€zinc Compounds: 1,4â€Silaboration of an α,βâ€Unsaturated Ketone to Form a γâ€Siloxyallylborane. Angewandte Chemie - International Edition, 2008, 47, 6606-6610.	13.8	182
18	Synthesis of Alkali Metal Salts of Borylsilyl Anions Utilizing Highly Crowded Silylboranes and Their Properties. Organometallics, 2008, 27, 880-893.	2.3	18

Takashi Kajiwara

#	Article	IF	CITATIONS
19	Preparation and Characterization of BIT Ferroelectrics by Precursor Method using Triethanolamine. , 2008, , .		0
20	Ladder Distyrylbenzenes with Silicon and Chalcogen Bridges:Â Synthesis, Structures, and Properties. Organic Letters, 2007, 9, 93-96.	4.6	80
21	Insertion of an Overcrowded Silylene into Hydro- and Haloboranes:Â A Novel Synthesis of Silylborane Derivatives and Their Properties. Organometallics, 2004, 23, 4723-4734.	2.3	49
22	Unprecedented insertion reaction of a silylene into a B–B bond and generation of a novel borylsilyl anion by boron–metal exchange reaction of the resultant diborylsilane. Chemical Communications, 2004, , 2218-2219.	4.1	22
23	Synthesis and Properties of the First Stable Silylene–Isocyanide Complexes. Chemistry - A European Journal, 2003, 9, 3530-3543.	3.3	89
24	Stable 2H-azasilirene and 2H-phosphasilirene: Addition reaction of an overcrowded silylene to a nitrile and a phosphaalkyne. Silicon Chemistry, 2002, 1, 313-319.	0.8	11
25	Reaction of Stable Silylene–Isocyanide Complexes with Boranes: Synthesis and Properties of the First Stable Silylborane–Isocyanide Complexes. Chemistry Letters, 2001, 30, 1076-1077.	1.3	17
26	Supramolecular assembly of light harvesting porphyrin hexamer. Tetrahedron Letters, 2001, 42, 3617-3620.	1.4	38