
Ehsan Eyshi Rezaei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8427740/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rising temperatures reduce global wheatÂproduction. Nature Climate Change, 2015, 5, 143-147.	18.8	1,544
2	Similar estimates of temperature impacts on global wheat yield by three independent methods. Nature Climate Change, 2016, 6, 1130-1136.	18.8	352
3	Climate change impact and adaptation for wheat protein. Global Change Biology, 2019, 25, 155-173.	9.5	312
4	Heat stress in cereals: Mechanisms and modelling. European Journal of Agronomy, 2015, 64, 98-113.	4.1	227
5	The uncertainty of crop yield projections is reduced by improved temperature response functions. Nature Plants, 2017, 3, 17102.	9.3	170
6	Impact of heat stress on crop yield—on the importance of considering canopy temperature. Environmental Research Letters, 2014, 9, 044012.	5.2	151
7	Global-scale drought risk assessment for agricultural systems. Natural Hazards and Earth System Sciences, 2020, 20, 695-712.	3.6	136
8	Multimodel ensembles improve predictions of crop–environment–management interactions. Global Change Biology, 2018, 24, 5072-5083.	9.5	111
9	Crop model improvement reduces the uncertainty of the response to temperature of multi-model ensembles. Field Crops Research, 2017, 202, 5-20.	5.1	109
10	Global wheat production with 1.5 and 2.0°C above preâ€industrial warming. Global Change Biology, 2019, 25, 1428-1444.	9.5	107
11	Intensity of heat stress in winter wheat—phenology compensates for the adverse effect of global warming. Environmental Research Letters, 2015, 10, 024012.	5.2	95
12	Canopy temperature for simulation of heat stress in irrigated wheat in a semi-arid environment: A multi-model comparison. Field Crops Research, 2017, 202, 21-35.	5.1	91
13	Climate change effect on wheat phenology depends on cultivar change. Scientific Reports, 2018, 8, 4891.	3.3	88
14	Demand for multi-scale weather data for regional crop modeling. Agricultural and Forest Meteorology, 2015, 200, 156-171.	4.8	74
15	Climate and management interaction cause diverse crop phenology trends. Agricultural and Forest Meteorology, 2017, 233, 55-70.	4.8	59
16	Drought risk for agricultural systems in South Africa: Drivers, spatial patterns, and implications for drought risk management. Science of the Total Environment, 2021, 799, 149505.	8.0	49
17	Rainfed wheat yields under climate change in northeastern Iran. Meteorological Applications, 2012, 19, 346-354.	2.1	47
18	Impact of data resolution on heat and drought stress simulated for winter wheat in Germany. European Journal of Agronomy, 2015, 65, 69-82.	4.1	44

Ehsan Eyshi Rezaei

#	Article	IF	CITATIONS
19	Quantifying the response of wheat yields to heat stress: The role of the experimental setup. Field Crops Research, 2018, 217, 93-103.	5.1	44
20	Weather impacts on crop yields - searching for simple answers to a complex problem. Environmental Research Letters, 2017, 12, 081001.	5.2	43
21	Mitigation of climate change impacts on maize productivity in northeast of Iran: a simulation study. Mitigation and Adaptation Strategies for Global Change, 2012, 17, 1-16.	2.1	41
22	Future production of rainfed wheat in Iran (Khorasan province): climate change scenario analysis. Mitigation and Adaptation Strategies for Global Change, 2014, 19, 211-227.	2.1	40
23	How does inter-annual variability of attainable yield affect the magnitude of yield gaps for wheat and maize? An analysis at ten sites. Agricultural Systems, 2018, 159, 199-208.	6.1	36
24	Physical robustness of canopy temperature models for crop heat stress simulation across environments and production conditions. Field Crops Research, 2018, 216, 75-88.	5.1	36
25	Decomposing crop model uncertainty: A systematic review. Field Crops Research, 2022, 279, 108448.	5.1	29
26	Determining optimum planting dates for rainfed wheat using the precipitation uncertainty model and adjusted crop evapotranspiration. Agricultural Water Management, 2013, 126, 56-63.	5.6	25
27	Evaluation of Ceres-Rice, Aquacrop and Oryza2000 Models in Simulation of Rice Yield Response to Different Irrigation and Nitrogen Management Strategies. Journal of Plant Nutrition, 2014, 37, 1749-1769.	1.9	25
28	The Optimal Phenological Phase of Maize for Yield Prediction with High-Frequency UAV Remote Sensing, 2022, 14, 1559.	4.0	25
29	Adaptation of crop production to climate change by crop substitution. Mitigation and Adaptation Strategies for Global Change, 2015, 20, 1155-1174.	2.1	23
30	Effects of soil- and climate data aggregation on simulated potato yield and irrigation water requirement. Science of the Total Environment, 2020, 710, 135589.	8.0	23
31	Estimating climate change, CO2 and technology development effects on wheat yield in northeast Iran. International Journal of Biometeorology, 2014, 58, 395-405.	3.0	22
32	Combined impacts of climate and nutrient fertilization on yields of pearl millet in Niger. European Journal of Agronomy, 2014, 55, 77-88.	4.1	22
33	Impact of crop management and environment on the spatio-temporal variance of potato yield at regional scale. Field Crops Research, 2021, 270, 108213.	5.1	21
34	Crop harvested area, not yield, drives variability in crop production in Iran. Environmental Research Letters, 2021, 16, 064058.	5.2	19
35	UAV-based indicators of crop growth are robust for distinct water and nutrient management but vary between crop development phases. Field Crops Research, 2022, 284, 108582.	5.1	19
36	Climatic Suitability of Growing Summer Squash (Cucurbita pepo L.) as a Medicinal Plant in Iran. Notulae Scientia Biologicae, 2011, 3, 39-46.	0.4	16

Ehsan Eyshi Rezaei

#	Article	IF	CITATIONS
37	Modelling Agroforestry's Contributions to People—A Review of Available Models. Agronomy, 2021, 11, 2106.	3.0	16
38	Nutrient supply affects the yield stability of major European crops—a 50 year study. Environmental Research Letters, 2021, 16, 014003.	5.2	15
39	Quick Detection of Field-Scale Soil Comprehensive Attributes via the Integration of UAV and Sentinel-2B Remote Sensing Data. Remote Sensing, 2021, 13, 4716.	4.0	14
40	Analysis of Drought Impact on Croplands from Global to Regional Scale: A Remote Sensing Approach. Remote Sensing, 2020, 12, 4030.	4.0	12
41	Implications of data aggregation method on crop model outputs – The case of irrigated potato systems in Tasmania, Australia. European Journal of Agronomy, 2021, 126, 126276.	4.1	11
42	Crop Yield Estimation Using Multi-Source Satellite Image Series and Deep Learning. , 2020, , .		11
43	Simulation of winter wheat response to variable sowing dates and densities in a high-yielding environment. Journal of Experimental Botany, 2022, 73, 5715-5729.	4.8	10
44	Climate change impact on legumes' water production function in the northeast of Iran. Journal of Water and Climate Change, 2015, 6, 374-385.	2.9	9
45	Uncertainty in climate change impact studies for irrigated maize cropping systems in southern Spain. Scientific Reports, 2022, 12, 4049.	3.3	9
46	The consequences of change in management practices on maize yield under climate warming in Iran. Theoretical and Applied Climatology, 2019, 137, 1001-1013.	2.8	8
47	Nitrogen and cultivated bulb weight effects on radiation and nitrogen-use efficiency, carbon partitioning and production of Persian shallot (Allium altissimum Regel.). Journal of Crop Science and Biotechnology, 2013, 16, 237-244.	1.5	7
48	The use of remote sensing to derive maize sowing dates for large-scale crop yield simulations. International Journal of Biometeorology, 2021, 65, 565-576.	3.0	7
49	How reliable are current crop models for simulating growth and seed yield of canola across global sites and under future climate change?. Climatic Change, 2022, 172, .	3.6	5
50	Crop Models as Tools for Agroclimatology. Agronomy, 0, , 519-546.	0.2	4
51	Processing tomatoes under climate change. Nature Food, 2022, 3, 404-405.	14.0	3
52	The potential of crop models in simulation of barley quality traits under changing climates: A review. Field Crops Research, 2022, 286, 108624.	5.1	3
53	Comparative Analysis of Drought Indices for Drought Zone Scheme of Northern Khorasan Province of Iran. Notulae Scientia Biologicae, 2011, 3, 62-69.	0.4	2