Dhanapal Pravarthana

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8427144/publications.pdf

Version: 2024-02-01

25 papers

554 citations

623734 14 h-index 23 g-index

28 all docs 28 docs citations

times ranked

28

1067 citing authors

#	Article	IF	CITATIONS
1	Highly sensitive and selective H2S gas sensor based on TiO2 thin films. Applied Surface Science, 2021, 549, 149281.	6.1	68
2	A Composite Elastic Conductor with High Dynamic Stability Based on 3D alabash Bunch Conductive Network Structure for Wearable Devices. Advanced Electronic Materials, 2018, 4, 1800137.	5.1	57
3	Intrinsically Stretchable Resistive Switching Memory Enabled by Combining a Liquid Metal–Based Soft Electrode and a Metal–Organic Framework Insulator. Advanced Electronic Materials, 2019, 5, 1800655.	5.1	53
4	One-Pot Synthesis of Highly Monodispersed Ferrite Nanocrystals: Surface Characterization and Magnetic Properties. Langmuir, 2011, 27, 13189-13197.	3 . 5	52
5	Enhanced thermoelectric performance in spark plasma textured bulk <i>n</i> -type BiTe2.7Se0.3 and <i>p-type</i> Bi0.5Sb1.5Te3. Applied Physics Letters, 2013, 102, .	3. 3	49
6	Off-Stoichiometric Nickel Cobaltite Nanoparticles: Thermal Stability, Magnetization, and Neutron Diffraction Studies. Journal of Physical Chemistry C, 2014, 118, 16246-16254.	3.1	30
7	A Wearable Capacitive Sensor Based on Ring/Diskâ€Shaped Electrode and Porous Dielectric for Noncontact Healthcare Monitoring. Global Challenges, 2020, 4, 1900079.	3 . 6	29
8	Growth and texture of spark plasma sintered Al2O3 ceramics: A combined analysis of X-rays and electron back scatter diffraction. Journal of Applied Physics, 2013, 113, .	2.5	21
9	Stretchable tactile sensor with high sensitivity and dynamic stability based on vertically aligned urchin-shaped nanoparticles. Materials Today Physics, 2020, 14, 100219.	6.0	20
10	Structure and magnetism of epitaxial PrVO ₃ films. Journal of Physics Condensed Matter, 2013, 25, 492201.	1.8	19
11	High-throughput synthesis of thermoelectric Ca3Co4O9 films. Applied Physics Letters, 2013, 103, 143123.	3.3	18
12	BiFeO ₃ /La _{0.7} Sr _{0.3} MnO ₃ heterostructures deposited on spark plasma sintered LaAlO ₃ substrates. Applied Physics Letters, 2014, 104, 082914.	3.3	18
13	Manipulation of Exchange Bias Effect via All-Solid-State <mml:math display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Li</mml:mi></mml:math> -lon Redox Capacitor with Antiferromagnetic Electrode. Physical Review Applied, 2020, 14	3.8	16
14	Photocatalytic Degradation of Azo Dyes Using Au:TiO2, Î ³ -Fe2O3:TiO2 Functional Nanosystems. Journal of Nanoscience and Nanotechnology, 2012, 12, 928-936.	0.9	14
15	Growth of Ca2MnO4 Ruddlesden-Popper structured thin films using combinatorial substrate epitaxy. Journal of Applied Physics, 2014, 116, .	2.5	12
16	Pulsed laser deposition of Sr2FeMoO6thin films grown on spark plasma sintered Sr2MgWO6substrates. Journal Physics D: Applied Physics, 2017, 50, 235301.	2.8	12
17	2D Magnetic Mesocrystals for Bit Patterned Media. Advanced Materials Interfaces, 2018, 5, 1800997.	3.7	12
18	Reversibly controlled magnetic domains of Co film via electric field driven oxygen migration at nanoscale. Applied Physics Letters, 2019, 114, .	3 . 3	11

#	ARTICLE Reversible Control of Magnetic Anisotropy and Magnetization in Amorphous Amorphous	lF	CITATIONS
19	ARTICLE Control of Magnetic Anisotropy and Magnetization in Amorphous <mml:math display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML">(mml:msub><mml:mi>Co</mml:mi><mml:mn>40</mml:mn><mml:msub><mml:mathvariant="normal">(mml:mi>6<mml:mn>20</mml:mn></mml:mathvariant="normal"></mml:msub><mml:mn>20<td>:mj>Feth></td><td>ıml;mi><mml< td=""></mml<></td></mml:mn></mml:math>	:mj>Feth>	ıml;mi> <mml< td=""></mml<>
20	Physical Review Applied, 2019, 12 High-throughput investigation of orientations effect on nanoscale magnetization reversal in cobalt ferrite thin films induced by electric field. Applied Physics Letters, 2017, 111, 162401.	3.3	9
21	Stress-coefficient of magnetoelastic anisotropy in flexible Fe, Co and Ni thin films. Journal of Magnetism and Magnetic Materials, 2020, 505, 166750.	2.3	8
22	Metastable monoclinic [110] layered perovskite Dy ₂ Ti ₂ O ₇ thin films for ferroelectric applications. RSC Advances, 2019, 9, 19895-19904.	3.6	7
23	Spin-valve-like magnetoresistance in a Ni-Mn-In thin film. Physical Review B, 2018, 97, .	3.2	4
24	Crystal Orientations Dependent Polarization Reversal in Ferroelectric PbZr 0.2 Ti 0.8 O 3 Thin Films for Multilevel Data Storage Applications. Advanced Materials Interfaces, 2021, 8, 2100871.	3.7	3
25	Elastic Conductors: A Composite Elastic Conductor with High Dynamic Stability Based on 3D-Calabash Bunch Conductive Network Structure for Wearable Devices (Adv. Electron. Mater. 9/2018). Advanced Electronic Materials, 2018, 4, 1870045.	5.1	0