List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/842665/publications.pdf Version: 2024-02-01

XHEANC OLAN

#	Article	IF	CITATIONS
1	Potential lead toxicity and leakage issues on lead halide perovskite photovoltaics. Journal of Hazardous Materials, 2022, 426, 127848.	6.5	100
2	Overcoming Acidic H ₂ O ₂ /Fe(II/III) Redox-Induced Low H ₂ O ₂ Utilization Efficiency by Carbon Quantum Dots Fenton-like Catalysis. Environmental Science & Technology, 2022, 56, 2617-2625.	4.6	54
3	Electrochemical Reactors for Continuous Decentralized H ₂ O ₂ Production. Angewandte Chemie - International Edition, 2022, 61, .	7.2	31
4	Electrochemical Reactors for Continuous Decentralized H ₂ O ₂ Production. Angewandte Chemie, 2022, 134, .	1.6	12
5	Modification of Tiâ€doped Hematite Photoanode with Quasiâ€molecular Cocatalyst: A Comparison of Improvement Mechanism Between Nonâ€noble and Noble Metals. ChemSusChem, 2021, 14, 2180-2187.	3.6	9
6	Controlling the Gas–Water Interface to Enhance Photocatalytic Degradation of Volatile Organic Compounds. ACS ES&T Engineering, 2021, 1, 1140-1148.	3.7	23
7	Hybrid Phase MoS ₂ as a Noble Metal-Free Photocatalyst for Conversion of Nitroaromatics to Aminoaromatics. Journal of Physical Chemistry C, 2021, 125, 20887-20895.	1.5	7
8	The ClO· generation and chlorate suppression in photoelectrochemical reactive chlorine species systems on BiVO4 photoanodes. Applied Catalysis B: Environmental, 2021, 296, 120387.	10.8	24
9	Peroxydisulfate activation by photo-generated charges on mesoporous carbon nitride for removal of chlorophenols. Applied Catalysis B: Environmental, 2021, 296, 120370.	10.8	42
10	Lead Stabilization and Iodine Recycling of Lead Halide Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 2021, 9, 16519-16525.	3.2	19
11	Design of Advanced Functional Materials Using Nanoporous Singleâ€Site Photocatalysts. Chemical Record, 2020, 20, 660-671.	2.9	7
12	Effective removal of chlorinated organic pollutants by bimetallic iron-nickel sulfide activation of peroxydisulfate. Chinese Chemical Letters, 2020, 31, 1535-1539.	4.8	34
13	Mechanochemically sulfured FeS1.92 as stable and efficient heterogeneous Fenton catalyst. Chinese Chemical Letters, 2020, 31, 1978-1981.	4.8	9
14	Binderless and Oxygen Vacancies Rich FeNi/Graphitized Mesoporous Carbon/Ni Foam for Electrocatalytic Reduction of Nitrate. Environmental Science & Technology, 2020, 54, 13344-13353.	4.6	106
15	Nano-Fe(0)/mesoporous carbon supported on biochar for activating peroxydisulfate to remove polycyclic aromatics hydrocarbons. Emergent Materials, 2020, 3, 307-313.	3.2	5
16	CaMnO3 perovskite nanocrystals for efficient peroxydisulfate activation. Chemical Engineering Journal, 2020, 398, 125638.	6.6	51
17	NiFe Layered Double Hydroxide (LDH) Nanosheet Catalysts with Fe as Electron Transfer Mediator for Enhanced Persulfate Activation. Journal of Physical Chemistry Letters, 2020, 11, 968-973.	2.1	59
18	Potassium stabilization of methylammonium lead bromide perovskite for robust photocatalytic H ₂ generation. EcoMat, 2020, 2, e12015.	6.8	23

#	Article	IF	CITATIONS
19	Highly Efficient Utilization of Nano-Fe(0) Embedded in Mesoporous Carbon for Activation of Peroxydisulfate. Environmental Science & Technology, 2019, 53, 9081-9090.	4.6	160
20	CuO nanosheet as a recyclable Fenton-like catalyst prepared from simulated Cu(<scp>ii</scp>) waste effluents by alkaline H ₂ O ₂ reaction. Environmental Science: Nano, 2019, 6, 105-114.	2.2	41
21	[Mo3S13]2â^' modified TiO2 coating on non-woven fabric for efficient photocatalytic mineralization of acetone. Applied Catalysis B: Environmental, 2019, 245, 190-196.	10.8	30
22	Secondary battery inspired NiO nanosheets with rich Ni(III) defects for enhancing persulfates activation in phenolic waste water degradation. Chemical Engineering Journal, 2019, 360, 97-103.	6.6	46
23	Evaluation of magnetic chitosan beads for adsorption of heavy metal ions. Science of the Total Environment, 2018, 627, 1396-1403.	3.9	72
24	Ferric (hydr)oxide/mesoporous carbon composites as Fenton-like catalysts for degradation of phenol. Research on Chemical Intermediates, 2018, 44, 4103-4117.	1.3	17
25	Hydrophilic mesoporous carbon as iron(III)/(II) electron shuttle for visible light enhanced Fenton-like degradation of organic pollutants. Applied Catalysis B: Environmental, 2018, 231, 108-114.	10.8	108
26	Secondary battery inspired α-nickel hydroxide as an efficient Ni-based heterogeneous catalyst for sulfate radical activation. Science Bulletin, 2018, 63, 278-281.	4.3	25
27	A metal-free visible light active photo-electro-Fenton-like cell for organic pollutants degradation. Applied Catalysis B: Environmental, 2018, 229, 211-217.	10.8	58
28	A highly efficient nanoporous BiVO4 photoelectrode with enhanced interface charge transfer Co-catalyzed by molecular catalyst. Applied Catalysis B: Environmental, 2018, 225, 504-511.	10.8	40
29	A Tandem Water Splitting Cell Based on Nanoporous BiVO ₄ Photoanode Cocatalyzed by Ultrasmall Cobalt Borate Sandwiched with Conformal TiO ₂ Layers. ACS Sustainable Chemistry and Engineering, 2018, 6, 16228-16234.	3.2	25
30	FeOOH quantum dots coupled g-C3N4 for visible light driving photo- Fenton degradation of organic pollutants. Applied Catalysis B: Environmental, 2018, 237, 513-520.	10.8	231
31	A simple fabrication of CH ₃ NH ₃ PbI ₃ perovskite for solar cells using low-purity PbI ₂ . Journal of Semiconductors, 2017, 38, 014004.	2.0	12
32	Sulfurated [NiFe]-based layered double hydroxides nanoparticles as efficient co-catalysts for photocatalytic hydrogen evolution using CdTe/CdS quantum dots. Applied Catalysis B: Environmental, 2017, 209, 155-160.	10.8	66
33	Visible Light Assisted Heterogeneous Fenton-Like Degradation of Organic Pollutant via α-FeOOH/Mesoporous Carbon Composites. Environmental Science & Technology, 2017, 51, 3993-4000.	4.6	229
34	Mesoporous TiO 2 films coated on carbon foam based on waste polyurethane for enhanced photocatalytic oxidation of VOCs. Applied Catalysis B: Environmental, 2017, 212, 1-6.	10.8	120
35	Highly Active IrO _{<i>x</i>} Nanoparticles/Black Si Electrode for Efficient Water Splitting with Conformal TiO ₂ Interface Engineering. ACS Sustainable Chemistry and Engineering, 2017, 5, 10940-10946.	3.2	27
36	A controllable fabrication of grain boundary PbI2 nanoplates passivated lead halide perovskites for high performance solar cells. Nano Energy, 2016, 26, 50-56.	8.2	151

#	Article	IF	CITATIONS
37	Carbon quantum dots decorated Bi2WO6 nanocomposite with enhanced photocatalytic oxidation activity for VOCs. Applied Catalysis B: Environmental, 2016, 193, 16-21.	10.8	247
38	Ionâ€Exchangeâ€Induced 2D–3D Conversion of HMA _{1â^'<i>x</i>} FA _{<i>x</i>} PbI ₃ Cl Perovskite into a Highâ€Quality MA _{1â^'<i>x</i>} FA _{<i>x</i>} PbI ₃ Perovskite. Angewandte Chemie - International Edition, 2016, 55, 13460-13464.	7.2	80
39	CdTe/CdS Core/Shell Quantum Dots Cocatalyzed by Sulfur Tolerant [Mo ₃ S ₁₃] ^{2–} Nanoclusters for Efficient Visible-Light-Driven Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2016, 4, 6653-6658.	3.2	61
40	Ionâ€Exchangeâ€Induced 2D–3D Conversion of HMA _{1â^'<i>x</i>} FA _{<i>x</i>} PbI ₃ Cl Perovskite into a Highâ€Quality MA _{1â^'<i>x</i>} FA _{<i>x</i>} PbI ₃ Perovskite. Angewandte Chemie, 2016, 128, 13658-13662.	1.6	9
41	In situ gas/solid reaction for the formation of luminescent quantum confined CH ₃ NH ₃ PbBr ₃ perovskite planar film. Chemical Communications, 2016, 52, 11080-11083.	2.2	18
42	Fast synthesis of anatase TiO2 single crystals by a facile solid-state method. Research on Chemical Intermediates, 2016, 42, 5975-5981.	1.3	16
43	Highly photocatalytic active thiomolybdate [Mo 3 S 13] 2â^' clusters/Bi 2 WO 6 nanocomposites. Catalysis Today, 2016, 274, 22-27.	2.2	13
44	A general non-CH ₃ NH ₃ X (X = I, Br) one-step deposition of CH ₃ NH ₃ PbX ₃ perovskite for high performance solar cells. Journal of Materials Chemistry A, 2016, 4, 3245-3248.	5.2	47
45	Microwave-antenna induced in situ synthesis of Cu nanowire threaded ZIF-8 with enhanced catalytic activity in H ₂ production. Nanoscale, 2016, 8, 7749-7754.	2.8	32
46	The stability of magnetic chitosan beads in the adsorption of Cu ²⁺ . RSC Advances, 2016, 6, 2678-2686.	1.7	27
47	Highly photocatalytic active thiomolybdate [Mo 3 S 13] 2â^' clusters/BiOBr nanocomposite with enhanced sulfur tolerance. Applied Catalysis B: Environmental, 2016, 183, 1-7.	10.8	35
48	A Plasmonic Molybdenum Oxide Hybrid with Reversible Tunability for Visible‣ightâ€Enhanced Catalytic Reactions. Advanced Materials, 2015, 27, 4616-4621.	11.1	174
49	Photocatalytic remediation of ionic pollutant. Science Bulletin, 2015, 60, 1791-1806.	4.3	53
50	In-Situ Confined Growth of Monodisperse Pt Nanoparticle@Graphene Nanobox Composites as Electrocatalytic Nanoreactors. Small, 2015, 11, 1003-1010.	5.2	24
51	Hierarchical mesoporous/microporous carbon with graphitized frameworks for high-performance lithium-ion batteries. APL Materials, 2014, 2, 113302.	2.2	17
52	Silver Nanoparticles Supported on CeO ₂ â€SBAâ€15 by Microwave Irradiation Possess Metal–Support Interactions and Enhanced Catalytic Activity. Chemistry - A European Journal, 2014, 20, 15746-15752.	1.7	52
53	Frontispiece: Silver Nanoparticles Supported on CeO2-SBA-15 by Microwave Irradiation Possess Metal-Support Interactions and Enhanced Catalytic Activity. Chemistry - A European Journal, 2014, 20, n/a-n/a.	1.7	0
54	Synergy effect in photodegradation of contaminants from water using ordered mesoporous carbon-based titania catalyst. Applied Catalysis B: Environmental, 2014, 146, 151-161.	10.8	35

#	Article	IF	CITATIONS
55	Design and Functionalization of Photocatalytic Systems within Mesoporous Silica. ChemSusChem, 2014, 7, 1528-1536.	3.6	109
56	Design and Functionalization of Photocatalytic Systems within Mesoporous Silica. ChemSusChem, 2014, 7, 1495-1495.	3.6	3
57	A triblock-copolymer-templating route to carbon spheres@SBA-15 large mesopore core–shell and hollow structures. RSC Advances, 2014, 4, 48676-48681.	1.7	4
58	Hierarchically tetramodal-porous zeolite ZSM-5 monoliths with template-free-derived intracrystalline mesopores. Chemical Science, 2014, 5, 1565.	3.7	98
59	Ordered mesoporous carbon-based titania as a reusable adsorbent-catalyst for removing phenol from water. Chinese Journal of Catalysis, 2013, 34, 1066-1075.	6.9	4
60	Siteâ€5pecific Carbon Deposition for Hierarchically Ordered Core/Shellâ€5tructured Graphitic Carbon with Remarkable Electrochemical Performance. ChemSusChem, 2013, 6, 1938-1944.	3.6	15
61	In-Situ Crystallization Route to Nanorod-Aggregated Functional ZSM-5 Microspheres. Journal of the American Chemical Society, 2013, 135, 1181-1184.	6.6	84
62	Generalized synthesis of core–shell structured nano-zeolite@ordered mesoporous silica composites. Catalysis Today, 2013, 204, 2-7.	2.2	53
63	A facile route to cage-like mesoporous silica coated ZSM-5 combined with Pt immobilization. Journal of Materials Chemistry A, 2013, 1, 7525.	5.2	29
64	Multiwall carbon nanotube@mesoporous carbon with core-shell configuration: a well-designed composite-structure toward electrochemical capacitor application. Journal of Materials Chemistry, 2011, 21, 13025.	6.7	68
65	Hydrothermal Etching Assisted Crystallization: A Facile Route to Functional Yolk-Shell Titanate Microspheres with Ultrathin Nanosheets-Assembled Double Shells. Journal of the American Chemical Society, 2011, 133, 15830-15833.	6.6	278
66	Controllable fabrication of uniform core–shell structured zeolite@SBA-15 composites. Chemical Science, 2011, 2, 2006.	3.7	94
67	Structure design of mesoporous carbons by blending PEO–PPO–PEO-type and PPO–PEO–PPO-type amphiphilic block copolymers in organic–organic self-assembly. Microporous and Mesoporous Materials, 2011, 141, 26-37.	2.2	10
68	A Selfâ€Template Strategy for the Synthesis of Mesoporous Carbon Nanofibers as Advanced Supercapacitor Electrodes. Advanced Energy Materials, 2011, 1, 382-386.	10.2	359
69	Singleâ€Crystalâ€like Titania Mesocages. Angewandte Chemie - International Edition, 2011, 50, 1105-1108.	7.2	94
70	Synthesis of ordered mesoporous crystalline carbon–anatase composites with high titania contents. Journal of Colloid and Interface Science, 2008, 328, 367-373.	5.0	28
71	Self-Assembly of Active Bi ₂ O ₃ /TiO ₂ Visible Photocatalyst with Ordered Mesoporous Structure and Highly Crystallized Anatase. Journal of Physical Chemistry C, 2008, 112, 6258-6262.	1.5	346
72	Direct Triblock-Copolymer-Templating Synthesis of Highly Ordered Fluorinated Mesoporous Carbon. Chemistry of Materials, 2008, 20, 1012-1018.	3.2	106