
Patricia Piccoli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8426610/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nonâ€structural carbohydrates and sugar export in grapevine leaves exposed to different light regimes. Physiologia Plantarum, 2021, 171, 728-738.	2.6	11
2	Wood hydrosystem of three cultivars of Vitis vinifera L. is modified in response to contrasting soils. Plant and Soil, 2021, 463, 573-588.	1.8	3
3	Abscisic Acid's Role in the Modulation of Compounds that Contribute to Wine Quality. Plants, 2021, 10, 938.	1.6	8
4	Native bacteria isolated from roots and rhizosphere of Solanum lycopersicum L. increase tomato seedling growth under a reduced fertilization regime. Scientific Reports, 2020, 10, 15642.	1.6	31
5	Simultaneous determination of carotenoids with different polarities in tomato products using a C30 core-shell column based approach. Microchemical Journal, 2020, 159, 105390.	2.3	7
6	Pseudomonas fluorescens and Azospirillum brasilense Increase Yield and Fruit Quality of Tomato Under Field Conditions. Journal of Soil Science and Plant Nutrition, 2020, 20, 1614-1624.	1.7	18
7	Modeling vegetative vigour in grapevine: unraveling underlying mechanisms. Heliyon, 2020, 6, e05708.	1.4	2
8	In vitro plants of Vitis vinifera respond to infection with the fungus Phaeoacremonium parasiticum by synthesizing the phytoalexin nerolidol. Plant Cell, Tissue and Organ Culture, 2019, 138, 459-466.	1.2	8
9	Role of ABA and Gibberellin A3 on gene expression pattern of sugar transporters and invertases in Vitis vinifera cv. Malbec during berry ripening. Plant Growth Regulation, 2018, 84, 275-283.	1.8	35
10	Arsenic and trace elements in soil, water, grapevine and onion in Jáchal, Argentina. Science of the Total Environment, 2018, 615, 1485-1498.	3.9	25
11	Plant growth promoting rhizobacteria alleviate stress by AsIII in grapevine. Agriculture, Ecosystems and Environment, 2018, 267, 100-108.	2.5	13
12	Carotenoid profile produced by <i>Bacillus licheniformis</i> Rt4M10 isolated from grapevines grown in high altitude and their antioxidant activity. International Journal of Food Science and Technology, 2018, 53, 2697-2705.	1.3	5
13	Phenolic metabolites in plasma and tissues of rats fed with a grape pomace extract as assessed by liquid chromatography-tandem mass spectrometry. Archives of Biochemistry and Biophysics, 2018, 651, 28-33.	1.4	12
14	Use of Plant Growth-Promoting Rhizobacteria as Biocontrol Agents: Induced Systemic Resistance Against Biotic Stress in Plants. , 2017, , 133-152.		14
15	Bacteria and smoke-water extract improve growth and induce the synthesis of volatile defense mechanisms in Vitis vinifera L. Plant Physiology and Biochemistry, 2017, 120, 1-9.	2.8	25
16	Grape pomace reduced reperfusion arrhythmias in rats with a high-fat-fructose diet. Food and Function, 2017, 8, 3501-3509.	2.1	8
17	Characterization of the As(III) tolerance conferred by plant growth promoting rhizobacteria to in vitro-grown grapevine. Applied Soil Ecology, 2017, 109, 60-68.	2.1	74
18	Rhizosphere associated bacteria trigger accumulation of terpenes in leaves of Vitis vinifera L. cv. Malbec that protect cells against reactive oxygen species. Plant Physiology and Biochemistry, 2016, 106, 295-304.	2.8	42

PATRICIA PICCOLI

#	Article	IF	CITATIONS
19	Malbec grape (Vitis vinifera L.) responses to the environment: Berry phenolics as influenced by solar UV-B, water deficit and sprayed abscisic acid. Plant Physiology and Biochemistry, 2016, 109, 84-90.	2.8	44
20	Ultraviolet-B radiation, water deficit and abscisic acid: a review of independent and interactive effects on grapevines. Theoretical and Experimental Plant Physiology, 2016, 28, 11-22.	1.1	15
21	Interactions between a plant growth-promoting rhizobacterium and smoke-derived compounds and their effect on okra growth. Journal of Plant Nutrition and Soil Science, 2015, 178, 741-747.	1.1	14
22	Characterization of polyphenols and evaluation of antioxidant capacity in grape pomace of the cv. Malbec. Food Chemistry, 2015, 178, 172-178.	4.2	116
23	Allium sativum produces terpenes with fungistatic properties in response to infection with Sclerotium cepivorum. Phytochemistry, 2015, 115, 152-160.	1.4	44
24	Acclimation mechanisms elicited by sprayed abscisic acid, solar UV-B and water deficit in leaf tissues of field-grown grapevines. Plant Physiology and Biochemistry, 2015, 91, 56-60.	2.8	38
25	Role of Abscisic Acid Producing PGPR in Sustainable Agriculture. Sustainable Development and Biodiversity, 2015, , 259-282.	1.4	10
26	Bacteria isolated from roots and rhizosphere of <i>Vitis vinifera</i> retard water losses, induce abscisic acid accumulation and synthesis of defenseâ€related terpenes in in vitro cultured grapevine. Physiologia Plantarum, 2014, 151, 359-374.	2.6	200
27	Solar UV-B radiation modifies the proportion of volatile organic compounds in flowers of field-grown grapevine (Vitis vinifera L.) cv. Malbec. Plant Growth Regulation, 2014, 74, 193-197.	1.8	13
28	Abiotic Stress Tolerance Induced by Endophytic PGPR. Soil Biology, 2013, , 151-163.	0.6	19
29	Volatile organic compounds characterized from grapevine (Vitis vinifera L. cv. Malbec) berries increase at pre-harvest and in response to UV-B radiation. Phytochemistry, 2013, 96, 148-157.	1.4	71
30	Metabolism of terpenes in the response of grape (Vitis vinifera L.) leaf tissues to UV-B radiation. Phytochemistry, 2012, 77, 89-98.	1.4	150
31	Solar UV-B and ABA Are Involved in Phenol Metabolism of Vitis vinifera L. Increasing Biosynthesis of Berry Skin Polyphenols. Journal of Agricultural and Food Chemistry, 2011, 59, 4874-4884.	2.4	164
32	An endophytic bacterium isolated from roots of the halophyte Prosopis strombulifera produces ABA, IAA, gibberellins A1 and A3 and jasmonic acid in chemically-defined culture medium. Plant Growth Regulation, 2011, 64, 207-210.	1.8	73
33	Abscisic acid is involved in the response of grape (<i>Vitis vinifera</i> L.) cv. Malbec leaf tissues to ultraviolet-B radiation by enhancing ultraviolet-absorbing compounds, antioxidant enzymes and membrane sterols. Plant, Cell and Environment, 2009, 33, 1-10.	2.8	168
34	Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Applied Microbiology and Biotechnology, 2004, 65, 497-503.	1.7	415
35	Azospirillum brasilense and Azospirillum lipoferum Hydrolyze Conjugates of GA20 and Metabolize the Resultant Aglycones to GA1 in Seedlings of Rice Dwarf Mutants. Plant Physiology, 2001, 125, 2053-2058.	2.3	85

Title is missing!. Plant Growth Regulation, 1998, 24, 7-11.

1.8 271

#	Article	IF	CITATIONS
37	Title is missing!. Plant Growth Regulation, 1997, 23, 179-182.	1.8	49