
Jean Constantino Gomes da Silva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8426275/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	An insight into the thermokinetics of the pyrolysis of invasive grass Sorghum halepense towards its bioenergy potential. Biomass Conversion and Biorefinery, 2024, 14, 5305-5318.	2.9	5
2	Pyrolysis of cocoa shell and its bioenergy potential: evaluating the kinetic triplet, thermodynamic parameters, and evolved gas analysis using TGA-FTIR. Biomass Conversion and Biorefinery, 2022, 12, 723-739.	2.9	33
3	Thermo-kinetic investigation of the multi-step pyrolysis of smoked cigarette butts towards its energy recovery potential. Biomass Conversion and Biorefinery, 2022, 12, 741-755.	2.9	14
4	Assessing the bioenergy potential of high-ash anaerobic sewage sludge using pyrolysis kinetics and thermodynamics to design a sustainable integrated biorefinery. Biomass Conversion and Biorefinery, 2022, 12, 693-704.	2.9	13
5	Prospection of catole coconut (Syagrus cearensis) as a new bioenergy feedstock: Insights from physicochemical characterization, pyrolysis kinetics, and thermodynamics parameters. Renewable Energy, 2022, 181, 207-218.	4.3	27
6	Prospecting pecan nutshell pyrolysis as a source of bioenergy and bio-based chemicals using multicomponent kinetic modeling, thermodynamic parameters estimation, and Py-GC/MS analysis. Renewable and Sustainable Energy Reviews, 2022, 153, 111753.	8.2	54
7	Thermo-kinetic study to explicate the bioenergy potential of Holy Thistle (HT). Energy Conversion and Management: X, 2022, 13, 100147.	0.9	1
8	Upgrading of banana leaf waste to produce solid biofuel by torrefaction: physicochemical properties, combustion behaviors, and potential emissions. Environmental Science and Pollution Research, 2022, 29, 25733-25747.	2.7	18
9	Potential of macauba endocarp (Acrocomia aculeate) for bioenergy production: Multi-component kinetic study and estimation of thermodynamic parameters of activation. Thermochimica Acta, 2022, 708, 179134.	1.2	10
10	Evaluating the bioenergy potential of cupuassu shell through pyrolysis kinetics, thermodynamic parameters of activation, and evolved gas analysis with TG/FTIR technique. Thermochimica Acta, 2022, 711, 179187.	1.2	16
11	Investigation on prospective bioenergy from pyrolysis of butia seed waste using TGA-FTIR: Assessment of kinetic triplet, thermodynamic parameters and evolved volatiles. Renewable Energy, 2022, 191, 238-250.	4.3	24
12	Investigation of the thermal behavior of Pinus wood pellets during torrefaction for application in metallurgical processes. Journal of Materials Research and Technology, 2022, 19, 3749-3759.	2.6	3
13	Torrefaction of low-value agro-industrial wastes using macro-TGA with GC-TCD/FID analysis: Physicochemical characterization, kinetic investigation, and evolution of non-condensable gases. Journal of Analytical and Applied Pyrolysis, 2022, 166, 105607.	2.6	8
14	Exploring AçaÃ-Seed (Euterpe oleracea) Pyrolysis Using Multi-component Kinetics and Thermodynamics Assessment Towards Its Bioenergy Potential. Bioenergy Research, 2021, 14, 209-225.	2.2	34
15	Kinetic and thermodynamics study of the pyrolytic process of the freshwater macroalga, Chara vulgaris. Journal of Applied Phycology, 2021, 33, 2511-2521.	1.5	22
16	A comprehensive study on by-products of food processing industry pyrolysis using a thermobalance reactor coupled to GC-FID/TCD: Mass, atomic and energy balances, thermokinetic modeling, product distribution, and characterization. Journal of Analytical and Applied Pyrolysis, 2021, 156, 105107.	2.6	3
17	Pyrolysis of the freshwater macroalgae Spirogyra crassa: Evaluating its bioenergy potential using kinetic triplet and thermodynamic parameters. Renewable Energy, 2021, 179, 1169-1178.	4.3	36
18	Torrefaction of ponkan peel waste in tubular fixed-bed reactor: In-depth bioenergetic evaluation of torrefaction products. Energy, 2020, 210, 118569.	4.5	10

#	Article	IF	CITATIONS
19	Demonstrating the Suitability of Tamarind Residues to Bioenergy Exploitation Via Combustion Through Physicochemical Properties, Performance Indexes, and Emission Characteristics. Bioenergy Research, 2020, 13, 1308-1320.	2.2	26
20	Insights into pyrolysis characteristics of Brazilian high-ash sewage sludges using thermogravimetric analysis and bench-scale experiments with GC-MS to evaluate their bioenergy potential. Biomass and Bioenergy, 2020, 138, 105614.	2.9	20
21	Single-step and multi-step thermokinetic study – Deconvolution method as a simple pathway for describe properly the biomass pyrolysis for energy conversion. Energy Conversion and Management, 2020, 209, 112653.	4.4	60
22	Insights into the bioenergy potential of jackfruit wastes considering their physicochemical properties, bioenergy indicators, combustion behaviors, and emission characteristics. Renewable Energy, 2020, 155, 1328-1338.	4.3	45
23	Investigation of the bioenergy potential of microalgae Scenedesmus acuminatus by physicochemical characterization and kinetic analysis of pyrolysis. Journal of Thermal Analysis and Calorimetry, 2019, 135, 3269-3280.	2.0	28
24	Bioenergy potential of red macroalgae Gelidium floridanum by pyrolysis: Evaluation of kinetic triplet and thermodynamics parameters. Bioresource Technology, 2019, 291, 121892.	4.8	44
25	Bioenergetic potential of Ponkan peel waste (Citrus reticulata) pyrolysis by kinetic modelling and product characterization. Biomass and Bioenergy, 2019, 131, 105401.	2.9	30
26	Thermal investigation of plastic solid waste pyrolysis via the deconvolution technique using the asymmetric double sigmoidal function: Determination of the kinetic triplet, thermodynamic parameters, thermal lifetime and pyrolytic oil composition for clean energy recovery. Energy Conversion and Management, 2019, 200, 112031.	4.4	82
27	Determination of the Bioenergy Potential of Brazilian Pine-Fruit Shell via Pyrolysis Kinetics, Thermodynamic Study, and Evolved Gas Analysis. Bioenergy Research, 2019, 12, 168-183.	2.2	53
28	Pyrolysis kinetics and physicochemical characteristics of skin, husk, and shell from green coconut wastes. Energy, Ecology and Environment, 2019, 4, 125-132.	1.9	20
29	Investigation of pyrolysis kinetics and thermal behavior of Invasive Reed Canary (Phalaris) Tj ETQq1 1 0.784314 rg	gBT /Overl	ock 10 Tf 50
30	Evaluation of gaseous emissions from thermal conversion of a mixture of solid municipal waste and wood chips in a pilot-scale heat generator. Renewable Energy, 2019, 141, 402-410.	4.3	29
31	Kinetics and thermodynamics parameters evaluation of pyrolysis of invasive aquatic macrophytes to determine their bioenergy potentials. Biomass and Bioenergy, 2019, 121, 28-40.	2.9	74
32	Combustion of pistachio shell: physicochemical characterization and evaluation of kinetic parameters. Environmental Science and Pollution Research, 2018, 25, 21420-21429.	2.7	33
33	Pyrolysis kinetic evaluation by single-step for waste wood from reforestation. Waste Management, 2018, 72, 265-273.	3.7	46
34	ACTIVATION TIME EFFECT ON ACTIVATED CARBON FROM COCONUT SHELL TO ENHANCE CO2 ADSORPTION. , 2017, , .		0
35	Lignocellulosic Residues from the Brazilian Juice Processing Industry as Novel Sustainable Sources for Bioenergy Production: Preliminary Assessment Using Physicochemical Characteristics. Journal of the Brazilian Chemical Society, 0, , .	0.6	8
36	CINÉTICA QUÃMICA DA CELULOSE NO PROCESSO DE PIRÓLISE. , 0, , .		0

#	Article	IF	CITATIONS
37	Pyrolysis kinetics and thermodynamic parameters of macroalgae Cladophora glomerata based on multi-step devolatilization to assess its bioenergy potential. Biomass Conversion and Biorefinery, 0, , 1.	2.9	5