
Lai-Hua Xie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8426062/publications.pdf Version: 2024-02-01

LAI-HUA XIE

#	Article	IF	CITATIONS
1	Oxidative Stress–Induced Afterdepolarizations and Calmodulin Kinase II Signaling. Circulation Research, 2009, 104, 79-86.	4.5	241
2	Action Potential Duration Restitution and Alternans in Rabbit Ventricular Myocytes. Circulation Research, 2005, 96, 459-466.	4.5	214
3	Revisiting the ionic mechanisms of early afterdepolarizations in cardiomyocytes: predominant by Ca waves or Ca currents?. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 302, H1636-H1644.	3.2	90
4	Arrhythmogenic consequences of intracellular calcium waves. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 297, H997-H1002.	3.2	86
5	Intracellular Ca Alternans: Coordinated Regulation by Sarcoplasmic Reticulum Release, Uptake, and Leak. Biophysical Journal, 2008, 95, 3100-3110.	0.5	78
6	Angiotensin II induces afterdepolarizations via reactive oxygen species and calmodulin kinase II signaling. Journal of Molecular and Cellular Cardiology, 2011, 50, 128-136.	1.9	61
7	Involvement of cytosolic and mitochondrial iron in iron overload cardiomyopathy: an update. Heart Failure Reviews, 2018, 23, 801-816.	3.9	61
8	Modulation of Intracellular Calcium Waves and Triggered Activities by Mitochondrial Ca Flux in Mouse Cardiomyocytes. PLoS ONE, 2013, 8, e80574.	2.5	39
9	Mitochondrial Ca ²⁺ Influx Contributes to Arrhythmic Risk in Nonischemic Cardiomyopathy. Journal of the American Heart Association, 2018, 7, .	3.7	38
10	Gi $\hat{l}\pm 1$ -Mediated Cardiac Electrophysiological Remodeling and Arrhythmia in Hypertrophic Cardiomyopathy. Circulation, 2007, 116, 596-605.	1.6	37
11	Iron Overload, Oxidative Stress and Calcium Mishandling in Cardiomyocytes: Role of the Mitochondrial Permeability Transition Pore. Antioxidants, 2020, 9, 758.	5.1	31
12	Involvement of mitochondrial permeability transition pore (mPTP) in cardiac arrhythmias: Evidence from cyclophilin D knockout mice. Cell Calcium, 2016, 60, 363-372.	2.4	30
13	Potential Arrhythmogenic Role of TRPC Channels and Store-Operated Calcium Entry Mechanism in Mouse Ventricular Myocytes. Frontiers in Physiology, 2018, 9, 1785.	2.8	23
14	Overexpression of adenylyl cyclase type 5 (AC5) confers a proarrhythmic substrate to the heart. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 308, H240-H249.	3.2	21
15	Cellular Electrophysiology of Iron-Overloaded Cardiomyocytes. Frontiers in Physiology, 2018, 9, 1615.	2.8	16
16	Proteomic analysis of mitochondrial biogenesis in cardiomyocytes differentiated from human induced pluripotent stem cells. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2021, 320, R547-R562.	1.8	14
17	Effects of metabolic inhibition on conduction, Ca transients, and arrhythmia vulnerability in embryonic mouse hearts. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H2472-H2478.	3.2	13
18	Normalization of connexin 43 protein levels prevents cellular and functional signs of dystrophic cardiomyopathy in mice. Neuromuscular Disorders, 2018, 28, 361-372.	0.6	13

Lai-Hua Xie

#	Article	IF	CITATIONS
19	Effect of densely ionizing radiation on cardiomyocyte differentiation from human-induced pluripotent stem cells. Physiological Reports, 2017, 5, e13308.	1.7	12
20	Antioxidant defense and protection against cardiac arrhythmias: lessons from a mammalian hibernator (the woodchuck). FASEB Journal, 2018, 32, 4229-4240.	0.5	12
21	Activation of TRPC (Transient Receptor Potential Canonical) Channel Currents in Iron Overloaded Cardiac Myocytes. Circulation: Arrhythmia and Electrophysiology, 2021, 14, e009291.	4.8	11
22	Cardiac adaptation and cardioprotection against arrhythmias and ischemia-reperfusion injury in mammalian hibernators. Pflugers Archiv European Journal of Physiology, 2021, 473, 407-416.	2.8	10
23	Calcium and Heart Failure: How Did We Get Here and Where Are We Going?. International Journal of Molecular Sciences, 2021, 22, 7392.	4.1	8
24	Mitochondrial depolarization promotes calcium alternans: Mechanistic insights from a ventricular myocyte model. PLoS Computational Biology, 2021, 17, e1008624.	3.2	4
25	Mitochondrial Contributions in the Genesis of Delayed Afterdepolarizations in Ventricular Myocytes. Frontiers in Physiology, 2021, 12, 744023.	2.8	4
26	Sickle Cell Anemia: The Impact of Discovery, Politics, and Business. Journal of Health Care for the Poor and Underserved, 2013, 24, 147-158.	0.8	3
27	Primary Effect of Reactive Oxygen Species on Electrical Remodeling of the Heart. Circulation Journal, 2014, 78, 1834-2836.	1.6	3
28	Abstract 254: Mitochondrial Permeability Transition Pore, Calcium Uniporter, and Iron Overload in the Heart. Circulation Research, 2018, 123, .	4.5	3
29	Calcium Handling Properties in a Hibernating Animal: Insights into Antiarrhythmic Mechanisms. Biophysical Journal, 2012, 102, 102a.	0.5	1
30	Abstract 507: Activation of Transient Receptor Potential Canonical Channel Currents in Iron-Overloaded Cardiac Myocytes. Circulation Research, 2019, 125, .	4.5	1