Rafael I Gonzalez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8425872/publications.pdf

Version: 2024-02-01

686830 752256 37 469 13 20 citations h-index g-index papers 37 37 37 654 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Dispersion of carbon nanotubes in aluminum improves radiation resistance. Nano Energy, 2016, 22, 319-327.	8.2	55
2	Bending energy of 2D materials: graphene, MoS ₂ and imogolite. RSC Advances, 2018, 8, 4577-4583.	1.7	26
3	Magnon valley Hall effect in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi>CrI</mml:mi><td>mrow><m< td=""><td>im๒๑n>3</td></m<></td></mml:mrow></mml:msub></mml:math>	mr ow > <m< td=""><td>im๒๑n>3</td></m<>	im ๒ ๑n>3
4	Model for Self-Rolling of an Aluminosilicate Sheet into a Single-Walled Imogolite Nanotube. Journal of Physical Chemistry C, 2014, 118, 28227-28233.	1.5	25
5	Ion implantation in nanodiamonds: size effect and energy dependence. Scientific Reports, 2018, 8, 5099.	1.6	25
6	Hydrogen Storage in Palladium Hollow Nanoparticles. Journal of Physical Chemistry C, 2016, 120, 23836-23841.	1.5	24
7	Hematene: a 2D magnetic material in van der Waals or non-van der Waals heterostructures. 2D Materials, 2019, 6, 045002.	2.0	24
8	Effect of the Generation of PAMAM Dendrimers on the Stabilization of Gold Nanoparticles. Journal of Chemical Information and Modeling, 2020, 60, 2966-2976.	2.5	24
9	Nanoindentation of Amorphous Carbon: a combined experimental and simulation approach. Acta Materialia, 2021, 203, 116485.	3.8	23
10	Advancements in the Synthesis of Building Block Materials: Experimental Evidence and Modeled Interpretations of the Effect of Na and K on Imogolite Synthesis. Journal of Physical Chemistry C, 2017, 121, 12658-12668.	1.5	18
11	Mechanical Properties Obtained by Indentation of Hollow Pd Nanoparticles. Journal of Physical Chemistry C, 2018, 122, 25035-25042.	1.5	18
12	Confinement effects in irradiation of nanocrystalline diamond. Carbon, 2015, 93, 458-464.	5.4	17
13	Formation of Hollow Gold Nanocrystals by Nanosecond Laser Irradiation. Journal of Physical Chemistry Letters, 2020, 11, 670-677.	2.1	15
14	Metal-nanotube composites as radiation resistant materials. Applied Physics Letters, 2016, 109, .	1.5	11
15	Molecular dynamics simulation of polymerlike thin films irradiated by fast ions: A comparison between FENE and Lennard-Jones potentials. Physical Review B, 2016, 94, .	1.1	11
16	Mechanical Response of Aluminosilicate Nanotubes under Compression. Journal of Physical Chemistry C, 2016, 120, 14428-14434.	1.5	11
17	Toward Controlled Morphology of FeCu Nanoparticles: Cu Concentration and Size Effects. Journal of Physical Chemistry C, 2018, 122, 8528-8534.	1.5	11
18	Hillock formation on nanocrystalline diamond. Carbon, 2017, 119, 219-224.	5.4	9

#	Article	IF	CITATIONS
19	Mechanical performance of lightweight polycrystalline Ni nanotubes. Computational Materials Science, 2019, 168, 81-86.	1.4	8
20	Molecular simulations of carbon allotropes in processes with creation and destruction of chemical bonds. Carbon, 2019, 144, 177-184.	5.4	8
21	Imogolite in water: Simulating the effects of nanotube curvature on structure and dynamics. Applied Clay Science, 2020, 191, 105582.	2.6	8
22	Nanoindentation of nanoporous tungsten: A molecular dynamics approach. Computational Materials Science, 2022, 209, 111336.	1.4	8
23	Temperature-dependent properties of 147- and 309-atom iron-gold nanoclusters. Physical Review B, 2011, 83, .	1.1	7
24	Coaxial nanocable composed by imogolite and carbon nanotubes. AIP Conference Proceedings, 2015, , .	0.3	7
25	Simulated mechanical properties of finite-size graphene nanoribbons. Nanotechnology, 2021, 32, 045709.	1.3	7
26	Inducing Porosity on Hollow Nanoparticles by Hypervelocity Impacts. Journal of Physical Chemistry C, 2017, 121, 17856-17861.	1.5	6
27	Thermal stability of aluminum oxide nanoparticles: role of oxygen concentration. Inorganic Chemistry Frontiers, 2019, 6, 1701-1706.	3.0	6
28	Growth of Ni nanoclusters on irradiated graphene: a molecular dynamics study. Physical Chemistry Chemical Physics, 2018, 20, 16347-16353.	1.3	5
29	Simulations of plasticity in diamond nanoparticles showing ultrahigh strength. Diamond and Related Materials, 2022, 126, 109109.	1.8	5
30	Self-rolling of an aluminosilicate sheet into a single walled imogolite nanotube: The role of the hydroxyl arrangement. AIP Conference Proceedings, 2015, , .	0.3	4
31	Surface states of FeF2 (110) and its uncompensated magnetization. Journal of Magnetism and Magnetic Materials, 2015, 393, 226-232.	1.0	4
32	Collisions between amorphous carbon nanoparticles: phase transformations. Astronomy and Astrophysics, 2020, 641, A159.	2.1	4
33	Role of the substrate dynamics: Iron clusters deposited on an iron slab. Surface Science, 2011, 605, 2061-2066.	0.8	3
34	Polycrystalline Ni nanotubes under compression: a molecular dynamics study. Scientific Reports, 2020, 10, 21096.	1.6	3
35	Inducing a topological transition in graphene nanoribbon superlattices by external strain. Physical Chemistry Chemical Physics, 2022, 24, 7134-7143.	1.3	2
36	Nanoparticle Shape Influence over Poly(lactic acid) Barrier Properties by Molecular Dynamics Simulations. ACS Omega, 2022, 7, 2583-2590.	1.6	1

#	Article	IF	CITATIONS
37	Interactions of Gas Particles with Graphene during High-Throughput Compressible Flow Exfoliation: A Molecular Dynamics Simulations Study. Journal of Physical Chemistry C, 0, , .	1.5	0