Darren J Kriticos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8425856/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Current and future potential distributions of <i>Helicoverpa punctigera</i> (Lepidoptera: Noctuidae): is this the next FAW?. Bulletin of Entomological Research, 2022, 112, 119-130.	1.0	0
2	Global population genomic signature of Spodoptera frugiperda (fall armyworm) supports complex introduction events across the Old World. Communications Biology, 2022, 5, 297.	4.4	34
3	Malice at the Gates of Eden: current and future distribution of <i>Agrilus mali</i> threatening wild and domestic apples. Bulletin of Entomological Research, 2022, 112, 745-757.	1.0	2
4	The potential global distribution of the papaya mealybug, <i>Paracoccus marginatus</i> , a polyphagous pest. Pest Management Science, 2021, 77, 1361-1370.	3.4	19
5	The Influence of Weather on the Occurrence of Aflatoxin B1 in Harvested Maize from Kenya and Tanzania. Foods, 2021, 10, 216.	4.3	9
6	Modelling the Potential Geographic Distribution of Two Trissolcus Species for the Brown Marmorated Stink Bug, Halyomorpha halys. Insects, 2021, 12, 491.	2.2	15
7	A general traitâ€based modelling framework for revealing patterns of airborne fungal dispersal threats to agriculture and native flora. New Phytologist, 2021, 232, 1506-1518.	7.3	8
8	Pretty (and) invasive: The potential global distribution of <i>Tithonia diversifolia</i> under current and future climates. Invasive Plant Science and Management, 2021, 14, 205-213.	1.1	2
9	Integrating ecoclimatic niche modelling methods into classical biological control programmes. Biological Control, 2021, 160, 104667.	3.0	11
10	Distribution and Relative Abundance of Bean Leaf Beetles (Ootheca spp.) (Insecta: Coleoptera:) Tj ETQq0 0 0 rgB	BT /Overlov 2.2	ck 10 Tf 50 38
11	Potential global distribution of Aleurocanthus woglumi considering climate change and irrigation. PLoS ONE, 2021, 16, e0261626.	2.5	6
12	<i>Mimosa pigra</i> in eastern and southern Africa: Distribution and socioâ€ecological impacts. Austral Ecology, 2020, 45, 788-799.	1.5	8
13	A preliminary assessment of the presence and distribution of invasive and potentially invasive alien plant species in Laikipia County, Kenya, a biodiversity hotspot. Koedoe, 2020, 62, .	0.9	4
14	Improving climate suitability for Bemisia tabaci in East Africa is correlated with increased prevalence	3.3	28

14	of whiteflies and cassava diseases. Scientific Reports, 2020, 10, 22049.	3.3	28
15	CLIMEX and MED-FOES Models for Predicting the Variability in Growth Potential and Persistence of Mediterranean Fruit Fly (Diptera: Tephritidae) Populations. Annals of the Entomological Society of America, 2020, 113, 114-124.	2.5	6
16	Parameter estimation for functional–structural plant models when data are scarce: using multiple patterns for rejecting unsuitable parameter sets. Annals of Botany, 2020, 126, 559-570.	2.9	3
17	The potential geographical distribution and phenology of Bemisia tabaci Middle East/Asia Minor 1, considering irrigation and glasshouse production. Bulletin of Entomological Research, 2020, 110, 567-576.	1.0	10
18	Biology of Invasive Plants: a new series within <i>Invasive Plant Science and Management</i> . Invasive	1.1	2

18 Plant Science and Management, 2020, 13, 115-119.

#	Article	IF	CITATIONS
19	Management and population dynamics of diamondback moth (<i>Plutella xylostella</i>): planting regimes, crop hygiene, biological control and timing of interventions. Bulletin of Entomological Research, 2019, 109, 257-265.	1.0	12
20	Black Sigatoka in bananas: Ecoclimatic suitability and disease pressure assessments. PLoS ONE, 2019, 14, e0220601.	2.5	22
21	Updating the global occurrence of Culicoides imicola, a vector for emerging viral diseases. Scientific Data, 2019, 6, 185.	5.3	11
22	Why are plant pathogens under-represented in eco-climatic niche modelling?. International Journal of Pest Management, 2019, 65, 207-216.	1.8	15
23	Sourcing effective biological control agents of conical snails, Cochlicella acuta, in Europe and north Africa for release in southern Australia. Biological Control, 2019, 134, 1-14.	3.0	15
24	Estimating the potential geographical range of Sirex noctilio: comparison with an existing model and relationship with field severity. Biological Invasions, 2018, 20, 2599-2622.	2.4	15
25	Considering biology when inferring range-limiting stress mechanisms for agricultural pests: a case study of the beet armyworm. Journal of Pest Science, 2018, 91, 523-538.	3.7	6
26	Global establishment threat from a major forest pest via international shipping: Lymantria dispar. Scientific Reports, 2018, 8, 13723.	3.3	17
27	<scp>WRASP</scp> : A spatial strategic weed risk analysis tool reveals important subnational variations in weed risks. Weed Research, 2018, 58, 398-412.	1.7	6
28	Predicting Potential Global Distribution of The Black Spotted Yellow Borer, Conogethes punctiferalis Guenée (Crambidae: Lepidoptera) by CLIMEX Modelling. , 2018, , 101-114.		0
29	The potential global distribution of the brown marmorated stink bug, Halyomorpha halys, a critical threat to plant biosecurity. Journal of Pest Science, 2017, 90, 1033-1043.	3.7	118
30	Unusual suspects in the usual places: a phylo-climatic framework to identify potential future invasive species. Biological Invasions, 2017, 19, 577-596.	2.4	6
31	Climate change and pest risk in temperate eucalypt and radiata pine plantations: a review. Australian Forestry, 2017, 80, 228-241.	0.9	10
32	A perspective on management of <i>Helicoverpa armigera</i> : transgenic Bt cotton, <scp>IPM</scp> , and landscapes. Pest Management Science, 2017, 73, 485-492.	3.4	97
33	The potential global distribution of Chilo partellus, including consideration of irrigation and cropping patterns. Journal of Pest Science, 2017, 90, 459-477.	3.7	49
34	Scientific critique of the paper "Climatic distribution of citrus black spot caused by Phyllosticta citricarpa. A historical analysis of disease spread in South Africa―by MartÃnez-Minaya et al. (2015). European Journal of Plant Pathology, 2017, 148, 497-502.	1.7	1
35	World Scientists' Warning to Humanity: A Second Notice. BioScience, 2017, 67, 1026-1028.	4.9	817
36	The potential distribution of cassava mealybug (Phenacoccus manihoti), a threat to food security for the poor. PLoS ONE, 2017, 12, e0173265.	2.5	29

#	Article	IF	CITATIONS
37	Including irrigation in niche modelling of the invasive wasp Vespula germanica (Fabricius) improves model fit to predict potential for further spread. PLoS ONE, 2017, 12, e0181397.	2.5	23
38	Biological introduction risks from shipping in a warming <scp>A</scp> rctic. Journal of Applied Ecology, 2016, 53, 340-349.	4.0	36
39	Modelling the potential impact of climate change on future spatial and temporal patterns of biological control agents: <i>Peristenus digoneutis</i> (Hymenoptera: Braconidae) as a case study. Canadian Entomologist, 2016, 148, 579-594.	0.8	13
40	The potential distribution of <i>Bactrocera dorsalis</i> : considering phenology and irrigation patterns. Bulletin of Entomological Research, 2016, 106, 19-33.	1.0	76
41	Population dynamics and management of diamondback moth (<i>Plutella xylostella</i>) in China: the relative contributions of climate, natural enemies and cropping patterns. Bulletin of Entomological Research, 2016, 106, 197-214.	1.0	35
42	Tools for Defusing a Major Global Food and Feed Safety Risk: Nonbiological Postharvest Procedures To Decontaminate Mycotoxins in Foods and Feeds. Journal of Agricultural and Food Chemistry, 2016, 64, 8959-8972.	5.2	42
43	Assessing and Managing the Current and Future Pest Risk from Water Hyacinth, (Eichhornia) Tj ETQq1 1 0.7843 11, e0120054.	14 rgBT /C 2.5)verlock 10 Ti 73
44	Cost-benefit analysis blueprint for regional weed management: <i>Nassella neesiana</i> (Chilean needle) Tj ETQq	0 0 0 rgBT 1.6	/Oyerlock 10
45	Research investment implications of shifts in the global geography of wheat stripe rust. Nature Plants, 2015, 1, 15132.	9.3	207
46	Downscaling Pest Risk Analyses: Identifying Current and Future Potentially Suitable Habitats for Parthenium hysterophorus with Particular Reference to Europe and North Africa. PLoS ONE, 2015, 10, e0132807.	2.5	33
47	A structured war-gaming framework for managing extreme risks. Ecological Economics, 2015, 116, 369-377.	5.7	7
48	Integrating pest population models with biophysical crop models to better represent the farming system. Environmental Modelling and Software, 2015, 72, 418-425.	4.5	37
49	The Potential Distribution of Invading Helicoverpa armigera in North America: Is It Just a Matter of Time?. PLoS ONE, 2015, 10, e0119618.	2.5	136
50	Worldwide Niche and Future Potential Distribution of Culicoides imicola, a Major Vector of Bluetongue and African Horse Sickness Viruses. PLoS ONE, 2014, 9, e112491.	2.5	60
51	Preventing a new invasive alien plant from entering and spreading in the Euroâ€Mediterranean region: the case study of <i>Parthenium hysterophorus</i> . EPPO Bulletin, 2014, 44, 479-489.	0.8	16
52	Balancing bioenergy and biosecurity policies: estimating current and future climate suitability patterns for a bioenergy crop. GCB Bioenergy, 2014, 6, 587-598.	5.6	9
53	Misconstrued risks from citrus black spot in colder climates: a response to Er et al. 2013. European Journal of Plant Pathology, 2014, 139, 231-236.	1.7	4
54	Using seasonal measurements to inform ecophysiology: extracting cardinal growth temperatures for process-based growth models of five Eucalyptus species/crosses from simple field trials. New Zealand Journal of Forestry Science, 2014, 44, .	0.8	9

#	Article	IF	CITATIONS
55	Extending the suite of <scp>bioclim</scp> variables: a proposed registry system and case study using principal components analysis. Methods in Ecology and Evolution, 2014, 5, 956-960.	5.2	71
56	Whether the Weather Drives Patterns of Endemic Amphibian Chytridiomycosis: A Pathogen Proliferation Approach. PLoS ONE, 2013, 8, e61061.	2.5	34
57	Predicted economic impact of black Sigatoka on the Australian banana industry. Crop Protection, 2013, 51, 48-56.	2.1	8
58	The Potential Global Distribution of Tall Buttercup (Ranunculus acris ssp. acris): Opposing Effects of Irrigation and Climate Change. Weed Science, 2013, 61, 230-238.	1.5	8
59	Combining field phenological observations with distribution data to model the potential distribution of the fruit fly <i>Ceratitis rosa</i> Karsch (Diptera: Tephritidae). Bulletin of Entomological Research, 2013, 103, 60-73.	1.0	39
60	Essential elements of discourse for advancing the modelling of species' current and potential distributions. Journal of Biogeography, 2013, 40, 608-611.	3.0	11
61	Right-Sizing Stem-Rust Research. Science, 2013, 340, 147-148.	12.6	104
62	Linking Climate Suitability, Spread Rates and Host-Impact When Estimating the Potential Costs of Invasive Pests. PLoS ONE, 2013, 8, e54861.	2.5	35
63	Combining a Climatic Niche Model of an Invasive Fungus with Its Host Species Distributions to Identify Risks to Natural Assets: Puccinia psidii Sensu Lato in Australia. PLoS ONE, 2013, 8, e64479.	2.5	67
64	Combining Inferential and Deductive Approaches to Estimate the Potential Geographical Range of the Invasive Plant Pathogen, Phytophthora ramorum. PLoS ONE, 2013, 8, e63508.	2.5	27
65	Including climate change in pest risk assessment: the peach fruit fly, <i>Bactrocera zonata</i> (Diptera:) Tj ETQq1	1 0 7843 1.0	14 rgBT /Ove
66	Comment on "Climatic Niche Shifts Are Rare Among Terrestrial Plant Invaders― Science, 2012, 338, 193-193.	12.6	46
67	A Common View of the Opportunities, Challenges, and Research Actions for Pongamia in Australia. Bioenergy Research, 2012, 5, 778-800.	3.9	31
68	Modelling the Geographical Range of a Species with Variable Life-History. PLoS ONE, 2012, 7, e40313.	2.5	41
69	Predicting the Benefits of Banana Bunchy Top Virus Exclusion from Commercial Plantations in Australia. PLoS ONE, 2012, 7, e42391.	2.5	23
70	A Suite of Models to Support the Quantitative Assessment of Spread in Pest Risk Analysis. PLoS ONE, 2012, 7, e43366.	2.5	56
71	The geographical distribution of Yellow dwarf viruses and their aphid vectors in Australian grasslands and wheat. Australasian Plant Pathology, 2012, 41, 375-387.	1.0	31
72	The potential global distribution of the invasive weed Nassella neesiana under current and future climates. Biological Invasions, 2012, 14, 1545-1556.	2.4	37

#	Article	IF	CITATIONS
73	Regional climate-matching to estimate current and future sources of biosecurity threats. Biological Invasions, 2012, 14, 1533-1544.	2.4	52
74	Individualâ€based modelling of moth dispersal to improve biosecurity incursion response. Journal of Applied Ecology, 2012, 49, 287-296.	4.0	13
75	An assessment of biomass for bioelectricity and biofuel, and for greenhouse gas emission reduction in <scp>A</scp> ustralia. GCB Bioenergy, 2012, 4, 148-175.	5.6	84
76	Estimating the global area of potential establishment for the western corn rootworm (<i>Diabrotica) Tj ETQq0 (</i>	0 0 rgBT /C	overlock 10 Tf 26
77	A decisionâ€support scheme for mapping endangered areas in pest risk analysis*. EPPO Bulletin, 2012, 42, 65-73.	0.8	28
78	Rating and mapping the suitability of the climate for pest risk analysis*. EPPO Bulletin, 2012, 42, 48-55.	0.8	20
79	Modelling and mapping spread in pest risk analysis: a generic approach*. EPPO Bulletin, 2012, 42, 74-80.	0.8	16
80	CliMond: global highâ€resolution historical and future scenario climate surfaces for bioclimatic modelling. Methods in Ecology and Evolution, 2012, 3, 53-64.	5.2	565
81	Climate Change and the Potential Distribution of an Invasive Shrub, Lantana camara L. PLoS ONE, 2012, 7, e35565.	2.5	90
82	Climate Change and the Potential Global Distribution of Serrated Tussock (<i>Nassella) Tj ETQq0 0 0 rgBT /Ove</i>	rlock 10 Tf 1.5	50,382 Td (tr
83	Application of General Circulation Models to Assess the Potential Impact of Climate Change on Potential Distribution and Relative Abundance of <i>Melanoplus sanguinipes</i> (Fabricius) (Orthoptera: Acrididae) in North America. Psyche: Journal of Entomology, 2011, 2011, 1-9.	0.9	20
84	Risk posed by the invasive defoliator Uraba lugens to New Zealand native flora. Agricultural and Forest Entomology, 2011, 13, 99-110.	1.3	5
85	Managing invasive weeds under climate change: considering the current and potential future distribution of <i>Buddleja davidii</i> . Weed Research, 2011, 51, 85-96.	1.7	49
86	Modelling horses for novel climate courses: insights from projecting potential distributions of native and alien Australian acacias with correlative and mechanistic models. Diversity and Distributions, 2011, 17, 978-1000.	4.1	191
87	Temporal limits to simulating the future spread pattern of invasive species: Buddleja davidii in Europe and New Zealand. Ecological Modelling, 2011, 222, 1880-1887.	2.5	15
88	Incorporating uncertainty and social values in managing invasive alien species: a deliberative multi-criteria evaluation approach. Biological Invasions, 2011, 13, 2323-2337.	2.4	72
89	Increased risk of pitch canker to Australasia under climate change. Australasian Plant Pathology, 2011, 40, 228-237.	1.0	20
90	Dothistroma needle blight and pitch canker: the current and future potential distribution of two important diseases of Pinus species. Canadian Journal of Forest Research, 2011, 41, 412-424.	1.7	56

#	Article	IF	CITATIONS
91	Using species niche models to inform strategic management of weeds in a changing climate. Biological Invasions, 2010, 12, 3711-3725.	2.4	12
92	Estimating the spatio-temporal risk of disease epidemics using a bioclimatic niche model. Ecological Modelling, 2010, 221, 2828-2838.	2.5	34
93	Modelling pheromone anemotaxis for biosecurity surveillance: Moth movement patterns reveal a downwind component of anemotaxis. Ecological Modelling, 2010, 221, 2801-2807.	2.5	3
94	Interactions between a leafhopper and rust fungus on the invasive plant Asparagus asparagoides in Australia: A case of two agents being better than one for biological control. Biological Control, 2010, 54, 322-330.	3.0	23
95	Evidence of active or passive downwind dispersal in mark–release–recapture of moths. Entomologia Experimentalis Et Applicata, 2010, 134, 160-169.	1.4	10
96	The effects of climate data precision on fitting and projecting species niche models. Ecography, 2010, 33, 115-127.	4.5	77
97	The current and future potential geographical distribution of <i>Hyparrhenia hirta</i> . Weed Research, 2010, 50, 174-184.	1.7	44
98	Pest Risk Maps for Invasive Alien Species: A Roadmap for Improvement. BioScience, 2010, 60, 349-362.	4.9	259
99	Process-based modelling of the severity and impact of foliar pest attack on eucalypt plantation productivity under current and future climates. Forest Ecology and Management, 2010, 259, 839-847.	3.2	45
100	A process-based population dynamics model to explore target and non-target impacts of a biological control agent. Ecological Modelling, 2009, 220, 2035-2050.	2.5	26
101	The current and future potential distribution of <i>Melaleuca quinquenervia</i> . Weed Research, 2009, 49, 381-390.	1.7	43
102	The current and future potential distribution of <i>Cytisus scoparius</i> : a weed of pastoral systems, natural ecosystems and plantation forestry. Weed Research, 2009, 49, 271-282.	1.7	57
103	The hosts and potential geographic range of Dothistroma needle blight. Forest Ecology and Management, 2009, 257, 1505-1519.	3.2	97
104	Major Sex Pheromone Components of the Australian Gum Leaf Skeletonizer Uraba lugens: (10E,12Z)-Hexadecadien-1-yl Acetate and (10E,12Z)-Hexadecadien-1-ol. Journal of Chemical Ecology, 2008, 34, 1125-1133.	1.8	11
105	Climate matching techniques to narrow the search for biological control agents. Biological Control, 2008, 46, 442-452.	3.0	86
106	The current and future potential geographical distribution of the oriental fruit fly, <i>Bactrocera dorsalis</i> (Diptera: Tephritidae). Bulletin of Entomological Research, 2007, 97, 369-378.	1.0	209
107	Pastoral weeds in New Zealand: Status and potential solutions. New Zealand Journal of Agricultural Research, 2007, 50, 139-161.	1.6	47
108	Using a process-based model to analyse compensatory growth in response to defoliation: Simulating herbivory by a biological control agent. Biological Control, 2007, 43, 119-129.	3.0	24

#	Article	IF	CITATIONS
109	Using a pheromone lure survey to establish the native and potential distribution of an invasive Lepidopteran, Uraba lugens. Journal of Applied Ecology, 2007, 44, 853-863.	4.0	58
110	Pests Under Global Change â \in " Meeting Your Future Landlords?. , 2007, , 211-226.		43
111	Potential of Selective Insecticides for Managing Uraba lugens (Lepidoptera: Nolidae) on Eucalypts. Journal of Economic Entomology, 2006, 99, 780-789.	1.8	5
112	Potential of Selective Insecticides for Managing <i>Uraba lugens</i> (Lepidoptera: Nolidae) on Eucalypts. Journal of Economic Entomology, 2006, 99, 780-789.	1.8	6
113	Advances in modelling and decision support systems for vegetation management in young forest plantations. Forestry, 2006, 79, 29-42.	2.3	22
114	The potential distribution of Chromolaena odorata (Siam weed) in relation to climate. Weed Research, 2005, 45, 246-254.	1.7	124
115	Predictions of summer diapause in the redlegged earth mite, Halotydeus destructor (Acari:) Tj ETQq1 1 0.784314	ł rg₿Ţ /Ov 2.0	verlock 10 Tf
116	<i>Uraba lugens</i> (Lepidoptera: Nolidae) in New Zealand: Pheromone Trapping for Delimitation and Phenology. Journal of Economic Entomology, 2005, 98, 1187-1192.	1.8	28
117	The fundamental and realized niche of the Monterey Pine aphid, Essigella californica (Essig) (Hemiptera: Aphididae): implications for managing softwood plantations in Australia. Diversity and Distributions, 2004, 10, 253-262.	4.1	56
118	Modelling the population dynamics of the Queensland fruit fly, Bactrocera (Dacus) tryoni: a cohort-based approach incorporating the effects of weather. Ecological Modelling, 2004, 173, 9-30.	2.5	74
119	Modelling a forest lepidopteran: phenological plasticity determines voltinism which influences population dynamics. Forest Ecology and Management, 2004, 198, 117-131.	3.2	40
120	The Potential Geographic Range of Pyrenophora semeniperda. Phytopathology, 2004, 94, 805-812.	2.2	49
121	Climate change and biotic invasions: a case history of a tropical woody vine. Biological Invasions, 2003, 5, 147-165.	2.4	74
122	SPAnDX: a process-based population dynamics model to explore management and climate change impacts on an invasive alien plant, Acacia nilotica. Ecological Modelling, 2003, 163, 187-208.	2.5	40
123	Climate change and the potential distribution of an invasive alien plant:Acacia niloticassp.indicain Australia. Journal of Applied Ecology, 2003, 40, 111-124.	4.0	255
124	Seedling establishment, mortality, tree growth rates and vigour of Acacia nilotica in different Astrebla grassland habitats: Implications for invasion. Austral Ecology, 2002, 27, 258-268.	1.5	19
125	Paddock-scale patterns of seed production and dispersal in the invasive shrub Acacia nilotica (Mimosaceae) in northern Australian rangelands. Austral Ecology, 2001, 26, 338-348.	1.5	26
126	Low Density of Prickly Acacia under Sheep Grazing in Queensland. Journal of Range Management, 2001, 54, 382.	0.3	13

#	Article	IF	CITATIONS
127	Plant Population Ecology and Biological Control: Acacia nilotica as a Case Study. Biological Control, 1999, 16, 230-239.	3.0	61
128	Taxonomic uncertainty in pest risks or modelling artefacts? Implications for biosecurity policy and practice. NeoBiota, 0, 23, 81-93.	1.0	8
129	Practical guidelines for modelling post-entry spread in invasion ecology. NeoBiota, 0, 18, 41-66.	1.0	15
130	Invasive alien species in the food chain: Advancing risk assessment models to address climate change, economics and uncertainty. NeoBiota, 0, 18, 1-7.	1.0	13
131	Potential distribution and biosecurity risks from three economically important plantâ€parasitic nematodes. Annals of Applied Biology, 0, , .	2.5	2
132	An assessment of the benefits of yellow Sigatoka (Mycosphaerella musicola) control in the Queensland Northern Banana Pest Quarantine Area. NeoBiota, 0, 18, 67-81.	1.0	6