Nicolas Vanthuyne

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8425364/nicolas-vanthuyne-publications-by-year.pdf

Version: 2024-04-27

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

250
papers

5,585
citations

492
ext. papers

61
g-index

5,58
avg, IF

5.58
L-index

#	Paper	IF	Citations
250	Enantiopure, luminescent, cyclometalated Ir(III) complexes with N-heterocyclic carbene-naphthalimide chromophore: design, vibrational circular dichroism and TD-DFT calculations <i>Dalton Transactions</i> , 2022 ,	4.3	2
249	Enantiopure Cyclometalated Rh(III) and Ir(III) Complexes Displaying Rigid Configuration at Metal Center: Design, Structures, Chiroptical Properties and Role of the Iodide Ligand. <i>Chemistry</i> , 2022 , 4, 15	6-167	
248	Hemicryptophane Cages with a -Symmetric Cyclotriveratrylene Unit. <i>Journal of Organic Chemistry</i> , 2021 , 86, 15055-15062	4.2	1
247	Luminescent Chiral Exciplexes with Sky-Blue and Green Circularly Polarized-Thermally Activated Delayed Fluorescence. <i>Chemistry - A European Journal</i> , 2021 , 27, 16505-16511	4.8	2
246	Enzymatic activity monitoring through dynamic nuclear polarization in Earth magnetic field. <i>Journal of Magnetic Resonance</i> , 2021 , 333, 107095	3	O
245	Synthesis and Properties of Partially Saturated Fluorenyl-Derived [n]Helicenes Featuring an Overcrowded Alkene. <i>Chemistry - A European Journal</i> , 2021 , 27, 7722-7730	4.8	1
244	On the Enantioselective Phosphoric-Acid-Catalyzed Hantzsch Synthesis of Polyhydroquinolines. <i>Organic Letters</i> , 2021 , 23, 3394-3398	6.2	4
243	Multigram-scale HPLC enantioseparation as a rescue pathway for circumventing racemization problem during enantioselective synthesis of ethyl 3,4-dihydro-2H-1,4-benzoxazine-2-carboxylate. <i>Chirality</i> , 2021 , 33, 324-336	2.1	
242	Circularly Polarized Fluorescent Helicene-Boranils: Synthesis, Photophysical and Chiroptical Properties. <i>Chemistry - A European Journal</i> , 2021 , 27, 7959-7967	4.8	8
241	Magnetic Resonance Imaging of Protease-Mediated Lung Tissue Inflammation and Injury. <i>ACS Omega</i> , 2021 , 6, 15012-15016	3.9	1
240	Are the Physical Properties of Xe@Cryptophane Complexes Easily Predictable? The Case of - and -Tris-aza-Cryptophanes. <i>Journal of Organic Chemistry</i> , 2021 , 86, 7648-7658	4.2	3
239	Chiral Radical Cation Salts of Me-EDT-TTF and DM-EDT-TTF with Octahedral, Linear and Tetrahedral Monoanions. <i>Magnetochemistry</i> , 2021 , 7, 87	3.1	2
238	Indolizy Carbene Ligand. Evaluation of Electronic Properties and Applications in Asymmetric Gold(I) Catalysis. <i>Angewandte Chemie</i> , 2021 , 133, 20032-20041	3.6	
237	C1-Symmetric Atropisomeric NHC Palladium(II) Complexes: Synthesis, Resolution and Characterization. <i>Advanced Synthesis and Catalysis</i> , 2021 , 363, 4229-4238	5.6	О
236	Enantioenriched Ruthenium-Tris-Bipyridine Complexes Bearing One Helical Bipyridine Ligand: Access to Fused Multihelicenic Systems and Chiroptical Redox Switches. <i>Inorganic Chemistry</i> , 2021 , 60, 11838-11851	5.1	4
235	A curved host and second guest cooperatively inhibit the dynamic motion of corannulene. <i>Nature Communications</i> , 2021 , 12, 4079	17.4	8
234	Dissecting the Role of the Sergeants in Supramolecular Helical Catalysts: From Chain Capping to Intercalation. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 4183-4191	16.4	6

233	Dissecting the Role of the Sergeants in Supramolecular Helical Catalysts: From Chain Capping to Intercalation. <i>Angewandte Chemie</i> , 2021 , 133, 4229-4237	3.6	2
232	Allosteric Guest Binding in Chiral Zirconium(IV) Double Decker Porphyrin Cages. <i>European Journal of Organic Chemistry</i> , 2021 , 2021, 607-617	3.2	1
231	Conducting chiral nickel(II) bis(dithiolene) complexes: structural and electron transport modulation with the charge and the number of stereogenic centres. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 4119	-47140	6
230	Enantioselective synthesis of chiral porphyrin macrocyclic hosts and kinetic enantiorecognition of viologen guests. <i>Chemical Science</i> , 2021 , 12, 1661-1667	9.4	3
229	Slight structural modulation around a pivotal bond: high impact on enantiomeric stability. <i>New Journal of Chemistry</i> , 2021 , 45, 16039-16047	3.6	
228	Exciton coupling chirality in helicene-porphyrin conjugates. Chemical Communications, 2021, 57, 10743-	19.846	3
227	Helical donor-acceptor platinum complexes displaying dual luminescence and near-infrared circularly polarized luminescence. <i>Dalton Transactions</i> , 2021 , 50, 13220-13226	4.3	3
226	Indolizy Carbene Ligand. Evaluation of Electronic Properties and Applications in Asymmetric Gold(I) Catalysis. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 19879-19888	16.4	2
225	Aryl Fluoroalkyl Sulfoxides: Optical Stability and pKa Measurement. <i>European Journal of Organic Chemistry</i> , 2021 , 2021, 5019-5026	3.2	2
224	Helically Chiral NHC-Gold(I) Complexes: Synthesis, Chiroptical Properties and Electronic Features of the [5]Helicene-Imidazolylidene Ligand. <i>European Journal of Organic Chemistry</i> , 2021 , 2021, 4769-4776	3.2	1
223	Triskelion-shaped iridium-helicene NHC complex. <i>Inorganic Chemistry Frontiers</i> , 2021 , 8, 3916-3925	6.8	2
222	Thiophene fused indenocorannulenes: synthesis, variable emission, and exceptional chiral configurational stability. <i>Organic Chemistry Frontiers</i> , 2021 , 8, 3653-3658	5.2	Ο
221	Achieving high circularly polarized luminescence with push-pull helicenic systems: from rationalized design to top-emission CP-OLED applications. <i>Chemical Science</i> , 2021 , 12, 5522-5533	9.4	24
220	Alkynylgold(I) C -Chiral Concave Complexes: Aggregation and Luminescence <i>Chemistry - A European Journal</i> , 2021 , e202103759	4.8	
219	Chiral Conducting Me-EDT-TTF and Et-EDT-TTF-Based Radical Cation Salts with the Perchlorate Anion. <i>Crystals</i> , 2020 , 10, 1069	2.3	6
218	Enantiopure ethyl 2,3-dibromopropionate: Enantioselective synthesis vs preparative HPLC enantioseparation of racemate on multigram scale. <i>Chirality</i> , 2020 , 32, 1045-1052	2.1	1
217	Optimizing Group Transfer Catalysis by Copper Complex with Redox-Active Ligand in an Entatic State. <i>IScience</i> , 2020 , 23, 100955	6.1	5
216	Long-Lived Circularly Polarized Phosphorescence in Helicene-NHC Rhenium(I) Complexes: The Influence of Helicene, Halogen, and Stereochemistry on Emission Properties. <i>Angewandte Chemie</i> , 2020 , 132, 8472-8478	3.6	10

215	Long-Lived Circularly Polarized Phosphorescence in Helicene-NHC Rhenium(I) Complexes: The Influence of Helicene, Halogen, and Stereochemistry on Emission Properties. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 8394-8400	16.4	28
214	Relayed Proton Brake in -Pyridyl-2propylaniline Derivative: Two Brakes with One Proton. <i>Journal of Organic Chemistry</i> , 2020 , 85, 5109-5113	4.2	4
213	Enantio- and Substrate-Selective Recognition of Chiral Neurotransmitters with -Symmetric Switchable Receptors. <i>Organic Letters</i> , 2020 , 22, 891-895	6.2	10
212	Combining Chirality and Hydrogen Bonding in Methylated Ethylenedithio-Tetrathiafulvalene Primary Diamide Precursors and Radical Cation Salts. <i>Crystal Growth and Design</i> , 2020 , 20, 2516-2526	3.5	9
211	ECyclodextrinNHCCold(I) Complex (ECyD)AuCl: A Chiral Nanoreactor for Enantioselective and Substrate-Selective Alkoxycyclization Reactions. <i>ACS Catalysis</i> , 2020 , 10, 5964-5972	13.1	22
210	Modulation of circularly polarized luminescence through excited-state symmetry breaking and interbranched exciton coupling in helical push-pull organic systems. <i>Chemical Science</i> , 2020 , 11, 567-576	59.4	40
209	Stereoselective Syntheses, Structures, and Properties of Extremely Distorted Chiral Nanographenes Embedding Hextuple Helicenes. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 3264-3271	16.4	34
208	Enantiopure encaged Verkadeß superbases: Synthesis, chiroptical properties, and use as chiral derivatizing agent. <i>Chirality</i> , 2020 , 32, 139-146	2.1	2
207	From Prochiral N-Heterocyclic Carbenes to Optically Pure Metal Complexes: New Opportunities in Asymmetric Catalysis. <i>Journal of the American Chemical Society</i> , 2020 , 142, 93-98	16.4	17
206	Stereoselective Syntheses, Structures, and Properties of Extremely Distorted Chiral Nanographenes Embedding Hextuple Helicenes. <i>Angewandte Chemie</i> , 2020 , 132, 3290-3297	3.6	19
205	Molecular motor-functionalized porphyrin macrocycles. <i>Nature Communications</i> , 2020 , 11, 5291	17.4	9
204	Two-Photon Absorbing AIEgens: Influence of Stereoconfiguration on Their Crystallinity and Spectroscopic Properties and Applications in Bioimaging. <i>ACS Applied Materials & Company Interfaces</i> , 2020 , 12, 55157-55168	9.5	7
203	Optically Pure -Symmetric Cyclic(alkyl)(amino)carbene Ruthenium Complexes for Asymmetric Olefin Metathesis. <i>Journal of the American Chemical Society</i> , 2020 , 142, 19895-19901	16.4	12
202	Axially and Helically Chiral Cationic Radical Bicarbazoles: SOMO-HOMO Level Inversion and Chirality Impact on the Stability of Mono- and Diradical Cations. <i>Journal of the American Chemical Society</i> , 2020 ,	16.4	20
201	An enzymatic acetal/hemiacetal conversion for the physiological temperature activation of the alkoxyamine CDN bond homolysis. <i>Organic Chemistry Frontiers</i> , 2020 , 7, 2916-2924	5.2	5
200	Dinuclear Rhenium Complexes with a Bridging Helicene-bis-bipyridine Ligand: Synthesis, Structure, and Photophysical and Chiroptical Properties. <i>ChemPlusChem</i> , 2020 , 85, 2446-2454	2.8	4
199	Absolute configuration and host-guest binding of chiral porphyrin-cages by a combined chiroptical and theoretical approach. <i>Nature Communications</i> , 2020 , 11, 4776	17.4	13
198	Simultaneous Control of Central and Helical Chiralities: Expedient Helicoselective Synthesis of Dioxa[6]helicenes. <i>Journal of the American Chemical Society</i> , 2020 , 142, 16199-16204	16.4	13

(2019-2020)

Chiroptical fingerprints to characterize lavender and lavandin essential oils. <i>Journal of Chromatography A</i> , 2020 , 1610, 460568	4.5	7	
Chiral Diketopyrrolopyrrole-Helicene Polymer With Efficient Red Circularly Polarized Luminescence. <i>Frontiers in Chemistry</i> , 2020 , 8, 237	5	14	
Synthesis, resolution, and chiroptical properties of hemicryptophane cage controlling the chirality of propeller arrangement of a C triamide unit. <i>Chirality</i> , 2019 , 31, 910-916	2.1	7	
Merging hypervalent iodine and sulfoximine chemistry: a new electrophilic trifluoromethylation reagent. <i>Chemical Science</i> , 2019 , 10, 10516-10523	9.4	18	
Extra hydrogen bonding interactions by peripheral indole groups stabilize benzene-1,3,5-tricarboxamide helical assemblies. <i>Chemical Communications</i> , 2019 , 55, 8548-8551	5.8	3	
Chiroptical study of cryptophanes subjected to self-encapsulation. <i>Chirality</i> , 2019 , 31, 481-491	2.1	1	
The Chemo- and Stereoselective Formation of Pallado- and Platinocryptophanes. <i>European Journal of Inorganic Chemistry</i> , 2019 , 2019, 2691-2706	2.3	5	
Azaindenocorannulenes: Synthesis, Properties, and Chirality. <i>Organic Letters</i> , 2019 , 21, 3510-3513	6.2	9	
An Enantiopure Cyclometallated Iridium Complex Displaying Long-Lived Phosphorescence both in Solution and in the Solid State. <i>Helvetica Chimica Acta</i> , 2019 , 102, e1900044	2	19	
Bis-4-aza[6]helicene: A Bis-helicenic 2,2PBipyridine with Chemically Triggered Chiroptical Switching Activity. <i>Journal of Organic Chemistry</i> , 2019 , 84, 5383-5393	4.2	28	
Effect of substituents on the configurational stability of the stereogenic nitrogen in metal(II) complexes of hamino acid Schiff bases. <i>Chirality</i> , 2019 , 31, 401-409	2.1	4	
N-C Axially Chiral Compounds with an ortho-Fluoro Substituent and Steric Discrimination between Hydrogen and Fluorine Atoms Based on a Diastereoselective Model Reaction. <i>Journal of Organic Chemistry</i> , 2019 , 84, 3169-3175	4.2	10	
Cyclobishelicenes: Shape-Persistent Figure-Eight Aromatic Molecules with Promising Chiroptical Properties. <i>Chemistry - A European Journal</i> , 2019 , 25, 14364-14369	4.8	18	
Synthesis and chiroptical properties of organometallic complexes of helicenic N-heterocyclic carbenes. <i>Chirality</i> , 2019 , 31, 1005-1013	2.1	5	
Unique Class of Enantiopure N-Heterocyclic Carbene Half-Sandwich Iridium(III) Complexes with Stable Configurations: Probing Five-Membered versus Six-Membered Iridacycles. <i>Inorganic Chemistry</i> , 2019 , 58, 2930-2933	5.1	9	
Chirality transfer in a cage controls the clockwise/anticlockwise propeller arrangement of the tris(2-pyridylmethyl)amine ligand. <i>Chemical Communications</i> , 2019 , 55, 14158-14161	5.8	6	
Chiral EDT-TTF precursors with one stereogenic centre: substituent size modulation of the conducting properties in the (R-EDT-TTF)2PF6 (R = Me or Et) series. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 12664-12673	7.1	13	
A HELIXOL-Derived Bisphosphinite Ligand: Synthesis and Application in Gold-Catalyzed Enynes Cycloisomerization. <i>European Journal of Organic Chemistry</i> , 2019 , 2019, 2129-2137	3.2	4	
	Chiral Diketopyrrolopyrrole-Helicene Polymer With Efficient Red Circularly Polarized Luminescence. Frontiers in Chemistry, 2020, 8, 237 Synthesis, resolution, and chiroptical properties of hemicryptophane cage controlling the chirality of propeller arrangement of a C triamide unit. Chirality, 2019, 31, 910-916 Merging hypervalent iodine and sulfoximine chemistry: a new electrophilic trifluoromethylation reagent. Chemical Science, 2019, 10, 10516-10523 Extra hydrogen bonding interactions by peripheral indole groups stabilize benzene-1,3,5-tricarboxamide helical assemblies. Chemical Communications, 2019, 55, 8548-8551 Chiroptical study of cryptophanes subjected to self-encapsulation. Chirality, 2019, 31, 481-491 The Chemo- and Stereoselective Formation of Pallado- and Platinocryptophanes. European Journal of Inorganic Chemistry, 2019, 2019, 2691-2706 Azaindenocorannulenes: Synthesis, Properties, and Chirality. Organic Letters, 2019, 21, 3510-3513 An Enantiopure Cyclometallated Iridium Complex Displaying Long-Lived Phosphorescence both in Solution and in the Solid State. Helivetica Chimica Acta, 2019, 102, e1900044 Bis-4-aza[6]helicene: A Bis-helicenic 2,2PBipyridine with Chemically Triggered Chiroptical Switching Activity. Journal of Organic Chemistry, 2019, 84, 5383-5393 Effect of substituents on the configurational stability of the stereogenic nitrogen in metal(II) complexes of Hamino acid Schiff bases. Chirality, 2019, 31, 401-409 N-C Axially Chiral Compounds with an ortho-fluoro Substituent and Steric Discrimination between Hydrogen and Fluorine Atoms Based on a Diastereoselective Model Reaction. Journal of Organic Chemistry, 2019, 84, 3169-3175 Cyclobishelicenes: Shape-Persistent Figure-Eight Aromatic Molecules with Promising Chiroptical Properties. Chemistry A European Journal, 2019, 25, 14364-14369 Synthesis and chiroptical properties of organometallic complexes of helicenic N-heterocyclic carbenes. Chirality, 2019, 31, 1005-1013 Unique Class of Enantiopure N-Heterocyclic Carbene Half-Sandwich	Chiral Diketopyrrolopyrrole-Helicene Polymer With Efficient Red Circularly Polarized Luminescence. Frontiers in Chemistry, 2020, 8, 237 Synthesis, resolution, and chiroptical properties of hemicryptophane cage controlling the chirality of propeller arrangement of a C triamide unit. Chirality, 2019, 31, 910-916 Merging hypervalent iodine and sulfoximine chemistry: a new electrophilic trifluoromethylation reagent. Chemical Science, 2019, 10, 1051-610523 Extra hydrogen bonding interactions by peripheral indole groups stabilize benzene-1,3,5-tricarboxamide helical assemblies. Chemical Communications, 2019, 55, 8548-8551 Chiroptical study of cryptophanes subjected to self-encapsulation. Chirality, 2019, 31, 481-491 The Chemo- and Stereoselective Formation of Pallado- and Platinocryptophanes. European Journal of Inorganic Chemistry, 2019, 2019, 2691-2706 Azaindenocorannulenes: Synthesis, Properties, and Chirality. Organic Letters, 2019, 21, 3510-3513 6.2 An Enantiopure Cyclometallated Iridium Complex Displaying Long-Lived Phosphorescence both in Solution and in the Solid State. Helvetica Chimica Acta, 2019, 102, e1900044 Bis-4-aza[6]helicene: A Bis-helicenic 2,2PBipyridine with Chemically Triggered Chiroptical Switching Activity. Journal of Organic Chemistry, 2019, 84, 5383-5393 Effect of substituents on the configurational stability of the stereogenic nitrogen in metal(II) complexes of Bemino acid Schiff bases. Chirality, 2019, 31, 401-409 N-C Axially Chiral Compounds with an ortho-Fluoro Substituent and Steric Discrimination between Hydrogen and Fluorine Atoms Based on a Diastereoselective Model Reaction. Journal of Organic Chemistry, 2019, 84, 3169-3175 Cyclobishelicenes: Shape-Persistent Figure-Eight Aromatic Molecules with Promising Chiroptical Properties. Chemistry, 2019, 31, 1005-1013 Unique Class of Enantiopure N-Heterocyclic Carbene Half-Sandwich Iridium(III) Complexes with Stable Configurations: Probing Five-Membered versus Six-Membered Iridacycles. Inorganic Chemistry, 2019, 82, 330-2302-2933	Chiral Diketopyrroleytel-Helicene Polymer With Efficient Red Circularly Polarized Luminescence, Frontiers in Chemistry, 2020, 8, 237 Synthesis, resolution, and chiroptical properties of hemicryptophane cage controlling the chirality of propeller arrangement of a C triamide unit. Chirality, 2019, 31, 910-916 Merging hypervalent iodine and sulfoximine chemistry: a new electrophilic trifluoromethylation reagent. Chemiscal Science, 2019, 10, 10516-10523 Extra hydrogen bonding interactions by peripheral indole groups stabilize benzene-1,3,5-tricarboxamide helical assemblies. Chemical Communications, 2019, 55, 8548-8551 Chiroptical study of cryptophanes subjected to self-encapsulation. Chirality, 2019, 31, 481-491 The Chemo- and Stereoselective Formation of Pallado- and Platinocryptophanes. European Journal of Inorganic Chemistry, 2019, 2019, 2691-2706 Azaindenocorannulenes: Synthesis, Properties, and Chirality. Organic Letters, 2019, 21, 3510-3513 6.2 9 An Enantiopure Cyclometallated Iridium Complex Displaying Long-Lived Phosphorescence both in Solution and in the Solid State. Helvetica Chimica Acta, 2019, 102, e1900044 Bis-4-aza[6]helicene: A Bis-helicenic 2, 2PBipyridine with Chemically Triggered Chiroptical Switching Activity. Journal of Organic Chemistry, 2019, 84, 5383-5393 Effect of substituents on the configurational stability of the stereogenic nitrogen in metal(II) complexes of liamino acid Schiff bases. Chirality, 2019, 31, 401-409 R-C Axially Chiral Compounds with an ortho-Fluoro Substituent and Steric Discrimination between Hydrogen and Fluorine Atoms Based on a Diastereoselective Model Reaction. Journal of Organic Chemistry, 2019, 84, 3169-3175 Cyclobishelicenes: Shape-Persistent Figure-Eight Aromatic Molecules with Promising Chiroptical Properties. Chemistry - A European Journal, 2019, 25, 14364-14369 Synthesis and chiroptical properties of organometallic complexes of helicenic N-heterocyclic carbenes. Chirality, 2019, 31, 1005-1013 Unique Class of Enantiopure N-Heterocyclic Carbene Half-

179	Enantiopure C-Cyclotriveratrylene with a Reversed Spatial Arrangement of the Substituents. <i>Organic Letters</i> , 2019 , 21, 160-165	6.2	8
178	Regioselective addition of DDQ on a quinoid ring: an entry into chiral zwitterionic bridging ligands. <i>New Journal of Chemistry</i> , 2018 , 42, 8247-8252	3.6	1
177	Enantioselective Complexation of Chiral Oxirane Derivatives by an Enantiopure Cryptophane in Water. <i>European Journal of Organic Chemistry</i> , 2018 , 2018, 1601-1607	3.2	4
176	Reversible Stereodivergent Cycloaddition of Racemic Helicenes to [60]Fullerene: A Chiral Resolution Strategy. <i>Organic Letters</i> , 2018 , 20, 1764-1767	6.2	2
175	Tetrathiafulvalene-[2.2]paracyclophanes: Synthesis, crystal structures, and chiroptical properties. <i>Chirality</i> , 2018 , 30, 568-575	2.1	6
174	N-C Axially Chiral Anilines: Electronic Effect on Barrier to Rotation and A Remote Proton Brake. <i>Chemistry - A European Journal</i> , 2018 , 24, 4453-4458	4.8	16
173	Chiral Atropisomeric Indenocorannulene Bowls: Critique of the Cahn-Ingold-Prelog Conception of Molecular Chirality. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 6470-6474	16.4	13
172	Selective On/Off-Nitroxides as Radical Probes to Investigate Non-radical Enzymatic Activity by Electron Paramagnetic Resonance. <i>Chemistry - A European Journal</i> , 2018 , 24, 7615-7619	4.8	7
171	1,2,3- versus 1,2-Indeno Ring Fusions Influence Structure Property and Chirality of Corannulene Bowls. <i>Journal of Organic Chemistry</i> , 2018 , 83, 3979-3986	4.2	8
170	Synthesis and stability evaluation of novel peptidomimetic Caspase-1 inhibitors for topical application. <i>Tetrahedron</i> , 2018 , 74, 4805-4822	2.4	1
169	Confining Nitrogen Inversion to Yield Enantiopure Quinolino[3,2,1-k]Phenothiazine Derivatives. <i>Advanced Functional Materials</i> , 2018 , 28, 1803140	15.6	18
168	Helicenes Grafted with 1,1,4,4-Tetracyanobutadiene Moieties: Helical Push-Pull Systems with Strong Electronic Circular Dichroism and Two-Photon Absorption. <i>Chemistry - A European Journal</i> , 2018 , 24, 14484-14494	4.8	19
167	Visible Light Chiral Photoinitiator for Radical Polymerization and Synthesis of Polymeric Films with Strong Chiroptical Activity. <i>Macromolecules</i> , 2018 , 51, 5628-5637	5.5	28
166	An elastase activity reporter for Electronic Paramagnetic Resonance (EPR) and Overhauser-enhanced Magnetic Resonance Imaging (OMRI) as a line-shifting nitroxide. <i>Free Radical Biology and Medicine</i> , 2018 , 126, 101-112	7.8	7
165	Atropisomerism in a 10-Membered Ring with Multiple Chirality Axes: (3 Z,9 Z)-1,2,5,8-Dithiadiazecine-6,7(5 H,8 H)-dione Series. <i>Journal of Organic Chemistry</i> , 2018 , 83, 7566-7573	4.2	3
164	Chiral Atropisomeric Indenocorannulene Bowls: Critique of the CahnIngoldPrelog Conception of Molecular Chirality. <i>Angewandte Chemie</i> , 2018 , 130, 6580-6584	3.6	2
163	Organocopper triggered cyclization of conjugated dienynes via tandem SN2?/Alder-ene reaction. <i>Organic Chemistry Frontiers</i> , 2018 , 5, 769-776	5.2	5
162	Synthesis of Carbo[6]helicene Derivatives Grafted with Amino or Aminoester Substituents from Enantiopure [6]Helicenyl Boronates. <i>Journal of Organic Chemistry</i> , 2018 , 83, 484-490	4.2	14

(2016-2018)

161	An oxorhenium complex bearing a chiral cyclohexane-1-olato-2-thiolato ligand: Synthesis, stereochemistry, and theoretical study of parity violation vibrational frequency shifts. <i>Chirality</i> , 2018 , 30, 147-156	2.1	5
160	Exciton coupling in diketopyrrolopyrrole-helicene derivatives leads to red and near-infrared circularly polarized luminescence. <i>Chemical Science</i> , 2018 , 9, 735-742	9.4	82
159	Redox-triggered chiroptical switching activity of ruthenium(III)-bis-(Ediketonato) complexes bearing a bipyridine-helicene ligand. <i>Chirality</i> , 2018 , 30, 592-601	2.1	10
158	Hit optimization studies of 3-hydroxy-indolin-2-one analogs as potential anti-HIV-1 agents. <i>Bioorganic Chemistry</i> , 2018 , 79, 212-222	5.1	7
157	Enantioselective Syntheses of Furan Atropisomers by an Oxidative Central-to-Axial Chirality Conversion Strategy. <i>Journal of the American Chemical Society</i> , 2017 , 139, 2140-2143	16.4	139
156	Chiral Fidelity in the Diastereoselective and Enantiospecific Synthesis of Indenes from Axially Chiral Benzylidene Cyclanes. <i>Chemistry - A European Journal</i> , 2017 , 23, 8375-8379	4.8	4
155	Synthesis, Resolution, and Absolute Configuration of Chiral Tris(2-pyridylmethyl)amine-Based Hemicryptophane Molecular Cages. <i>Journal of Organic Chemistry</i> , 2017 , 82, 6082-6088	4.2	16
154	Enantiopure Cycloiridiated Complexes Bearing a Pentahelicenic N-Heterocyclic Carbene and Displaying Long-Lived Circularly Polarized Phosphorescence. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 8236-8239	16.4	110
153	Enantiopure Cycloiridiated Complexes Bearing a Pentahelicenic N-Heterocyclic Carbene and Displaying Long-Lived Circularly Polarized Phosphorescence. <i>Angewandte Chemie</i> , 2017 , 129, 8348-835	1 ^{3.6}	35
152	Chiral Nanographene Propeller Embedding Six Enantiomerically Stable [5]Helicene Units. <i>Journal of the American Chemical Society</i> , 2017 , 139, 18508-18511	16.4	104
151	Steric Scale of Common Substituents from Rotational Barriers of N-(o-Substituted aryl)thiazoline-2-thione Atropisomers. <i>Journal of Organic Chemistry</i> , 2017 , 82, 10188-10200	4.2	34
150	Experimental and Theoretical Study of the Complexation of Cesium and Thallium Cations by a Water-Soluble Cryptophane. <i>ChemistrySelect</i> , 2017 , 2, 5292-5300	1.8	6
149	Artificial Chiral Metallo-pockets Including a Single Metal Serving as Structural Probe and Catalytic Center. <i>CheM</i> , 2017 , 3, 174-191	16.2	45
148	Triplet state CPL active helicene-dithiolene platinum bipyridine complexes. <i>Chemical Communications</i> , 2017 , 53, 9210-9213	5.8	39
147	Chiroptical properties of cryptophane-111. Physical Chemistry Chemical Physics, 2017, 19, 18303-18310	3.6	8
146	Synthesis and Chiroptical Properties of Hexa-, Octa-, and Deca-azaborahelicenes: Influence of Helicene Size and of the Number of Boron Atoms. <i>Chemistry - A European Journal</i> , 2017 , 23, 407-418	4.8	68
145	Triggering Emission with the Helical Turn in Thiadiazole-Helicenes. <i>Chemistry - A European Journal</i> , 2017 , 23, 437-446	4.8	31
144	A helical naphthopyran dopant for photoresponsive cholesteric liquid crystals. <i>Chemical Communications</i> , 2016 , 53, 200-203	5.8	23

143	Tuning the structure of 1,3,5-benzene tricarboxamide self-assemblies through stereochemistry. <i>Chemical Communications</i> , 2016 , 52, 13369-13372	5.8	16
142	Iron Alkynyl Helicenes: Redox-Triggered Chiroptical Tuning in the IR and Near-IR Spectral Regions and Suitable for Telecommunications Applications. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 8062-6	16.4	55
141	Large-Scale Synthesis of Enantiopure Molecular Cages: Chiroptical and Recognition Properties. <i>Chemistry - A European Journal</i> , 2016 , 22, 2068-2074	4.8	19
140	Electronic and chiroptical properties of chiral cycloiridiated complexes bearing helicenic NHC ligands. <i>Chemical Communications</i> , 2016 , 52, 9243-6	5.8	22
139	Cyclotriveratrylene-BINOL-Based Host Compounds: Synthesis, Absolute Configuration Assignment, and Recognition Properties. <i>Journal of Organic Chemistry</i> , 2016 , 81, 3199-205	4.2	10
138	Conformational changes and chiroptical switching of enantiopure bis-helicenic terpyridine upon Zn(2+) binding. <i>Chemical Communications</i> , 2016 , 52, 5932-5	5.8	69
137	Palladium Tandem Catalysis in the Atropodiastereoselective Synthesis of Indenes Bearing Central and Axial Chirality. <i>ACS Catalysis</i> , 2016 , 6, 1559-1564	13.1	13
136	Synthesis and Structural Properties of Aza[n]helicene Platinum Complexes: Control of Cis and Trans Stereochemistry. <i>Inorganic Chemistry</i> , 2016 , 55, 2009-17	5.1	9
135	Analysis of the major chiral compounds of Artemisia herba-alba essential oils (EOs) using reconstructed vibrational circular dichroism (VCD) spectra: En route to a VCD chiral signature of EOs. <i>Analytica Chimica Acta</i> , 2016 , 903, 121-30	6.6	11
134	A Proof of Concept: 2-Pyrazolines (4,5-Dihydro-1H-pyrazoles) Can Be Used as Organocatalysts via Iminium Activation. <i>Letters in Organic Chemistry</i> , 2016 , 13, 414-419	0.6	1
133	Iron Alkynyl Helicenes: Redox-Triggered Chiroptical Tuning in the IR and Near-IR Spectral Regions and Suitable for Telecommunications Applications. <i>Angewandte Chemie</i> , 2016 , 128, 8194-8198	3.6	22
132	Combining Organocatalysis with Central-to-Axial Chirality Conversion: Atroposelective Hantzsch-Type Synthesis of 4-Arylpyridines. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 1401-5	i 16.4	115
131	Bimetallic Gold(I) Complexes with Ethynyl-Helicene and Bis-Phosphole Ligands: Understanding the Role of Aurophilic Interactions in their Chiroptical Properties. <i>Chemistry - A European Journal</i> , 2016 , 22, 6075-86	4.8	14
130	Combining Organocatalysis with Central-to-Axial Chirality Conversion: Atroposelective Hantzsch-Type Synthesis of 4-Arylpyridines. <i>Angewandte Chemie</i> , 2016 , 128, 1423-1427	3.6	54
129	Unusual Chiroptical Properties of the Cryptophane-222 Skeleton. <i>Journal of Physical Chemistry B</i> , 2016 , 120, 12650-12659	3.4	6
128	Closed vs Open-Shell CTV Based Host Compounds: A Direct Comparison. <i>ChemistrySelect</i> , 2016 , 1, 6316	-63320	3
127	A switchable dual organocatalytic system and the enantioselective total synthesis of the quadrane sesquiterpene suberosanone. <i>Chemical Communications</i> , 2016 , 52, 6565-8	5.8	17
126	Bis-phosphine allene ligand: coordination chemistry and preliminary applications in catalysis. <i>Chemical Communications</i> , 2016 , 52, 6785-8	5.8	15

Tuning the nature and stability of self-assemblies formed by ester benzene 1,3,5-tricarboxamides: the crucial role played by the substituents. <i>Soft Matter</i> , 2016 , 12, 7824-7838	3.6	32
Access to N-thioalkenyl and N-(o-thio)aryl-benzimidazol-2-ones by ring opening of thiazolobenzimidazolium and benzimidazobenzothiazolium salts and C-O bond cleavage of an alkoxide. <i>Journal of Organic Chemistry</i> , 2015 , 80, 3233-41	4.2	6
Chiroptical Properties of Cryptophane-223 and -233 Investigated by ECD, VCD, and ROA Spectroscopy. <i>Journal of Physical Chemistry B</i> , 2015 , 119, 8631-9	3.4	16
Revisiting the assembly of amino ester-based benzene-1,3,5-tricarboxamides: chiral rods in solution. <i>Chemical Communications</i> , 2015 , 51, 7397-400	5.8	34
H-adamantylphosphinates as universal precursors of P-stereogenic compounds. <i>Journal of Organic Chemistry</i> , 2015 , 80, 4132-41	4.2	44
Vibrational and electronic circular dichroism studies on the axially chiral pyridine-N-oxide: trans-2,6-di-ortho-tolyl-3,4,5-trimethylpyridine-N-oxide. <i>Tetrahedron: Asymmetry</i> , 2015 , 26, 1043-1049		3
Acid/base-triggered switching of circularly polarized luminescence and electronic circular dichroism in organic and organometallic helicenes. <i>Chemistry - A European Journal</i> , 2015 , 21, 1673-81	4.8	126
A forgotten chiral spiro compound revisited: 3,3Pdimethyl-3H,3PH-2,2Pspirobi[[1,3]benzothiazole]. <i>Chirality</i> , 2015 , 27, 716-21	2.1	1
Synthesis of Allenes Bearing Phosphine Oxide Groups and Investigation of Their Reactivity toward Gold Complexes. <i>Advanced Synthesis and Catalysis</i> , 2015 , 357, 2213-2218	5.6	18
Stereospecific Synthesis of ∃and IHydroxyalkyl P-Stereogenic Phosphine-Boranes and Functionalized Derivatives: Evidence of the P=O Activation in the BH3 -Mediated Reduction. <i>Chemistry - A European Journal</i> , 2015 , 21, 15607-21	4.8	18
Organocopper-Triggered Cyclisation of Conjugated Diene-ynes: Diastereo- and Enantioselective Synthesis of Indenes. <i>Advanced Synthesis and Catalysis</i> , 2015 , 357, 3611-3616	5.6	8
Ruthenium-Grafted Vinylhelicenes: Chiroptical Properties and Redox Switching. <i>Chemistry - A European Journal</i> , 2015 , 21, 17100-15	4.8	38
Is Molecular Chirality Connected to Supramolecular Chirality? The Particular Case of Chiral 2-Pyridyl Alcohols. <i>Crystal Growth and Design</i> , 2015 , 15, 935-945	3.5	13
Atropisomerism in amidinoquinoxaline N-oxides: effect of the ring size and substituents on the enantiomerization barriers. <i>Journal of Organic Chemistry</i> , 2015 , 80, 1689-95	4.2	12
Two-photon absorption and two-photon circular dichroism of hexahelicene derivatives: a study of the effect of the nature of intramolecular charge transfer. <i>RSC Advances</i> , 2015 , 5, 17429-17437	3.7	26
enantio-Enriched CPL-active helicene-bipyridine-rhenium complexes. <i>Chemical Communications</i> , 2015 , 51, 3754-7	5.8	70
A racemic and enantiopure unsymmetric diiron(III) complex with a chiral o-carborane-based pyridylalcohol ligand: combined chiroptical, magnetic, and nonlinear optical properties. <i>Chemistry - A European Journal</i> , 2014 , 20, 1081-90	4.8	18
Double transfer of chirality in organocopper-mediated bis(alkylating) cycloisomerization of enediynes. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 3227-31	16.4	31
	the crucial role played by the substituents. <i>Soft Matter</i> , 2016 , 12, 7824-7838 Access to N-thicalkenyl and N-(o-thic)aryl-benzimidazol-2-ones by ring opening of thizaclobenzimidazolium and benzimidazosobenzothizacioum salts and C-O bond cleavage of an alkoxide. <i>Journal of Organic Chemistry</i> , 2015 , 80, 3233-41 Chiroptical Properties of Cryptophane-223 and -233 Investigated by ECD, VCD, and ROA Spectroscopy. <i>Journal of Physical Chemistry B</i> , 2015 , 119, 8631-9 Revisiting the assembly of amino ester-based benzene-1,3,5-tricarboxamides: chiral rods in solution. <i>Chemical Communications</i> , 2015 , 51, 7397-400 H-adamantylphosphinates as universal precursors of P-stereogenic compounds. <i>Journal of Organic Chemistry</i> , 2015 , 80, 4132-41 Vibrational and electronic circular dichroism studies on the axially chiral pyridine-N-oxide: trans-2,6-di-ortho-tolyl-3,4,5-trimethylpyridine-N-oxide. <i>Tetrahedron: Asymmetry</i> , 2015 , 26, 1043-1049 Acid/base-triggered switching of circularly polarized luminescence and electronic circular dichroism in organic and organometallic helicenes. <i>Chemistry - A European Journal</i> , 2015 , 21, 1673-81 A forgotten chiral spiro compound revisited: 3,3Pdimethyl-3H,3RH-2,2Pspirobi[[1,3]benzothiazole]. <i>Chirality</i> , 2015 , 27, 716-21 Synthesis of Allenes Bearing Phosphine Oxide Groups and Investigation of Their Reactivity toward Gold Complexes. <i>Advanced Synthesis and Catalysis</i> , 2015 , 357, 2213-2218 Stereospecific Synthesis of Band Bhydroxyalkyl P-Stereogenic Phosphine-Boranes and Functionalized Derivatives: Evidence of the P-O Activation in the BH3 -Mediated Reduction. <i>Chemistry - A European Journal</i> , 2015 , 21, 15607-21 Organocopper-Triggered Cyclisation of Conjugated Diene-ynes: Diastereo- and Enantioselective Synthesis of Indenes. <i>Advanced Synthesis and Catalysis</i> , 2015 , 357, 3611-3616 Ruthenium-Grafted Vinylhelicenes: Chiroptical Properties and Redox Switching. <i>Chemistry - A European Journal</i> , 2015 , 21, 17100-15 Is Molecular Chirality Connected to Supramolecular C	the crucial role played by the substituents. <i>Soft Matter</i> , 2016 , 12, 7824-7838 Access to N-thicalkenyl and N-(o-thio)aryl-benzimidazol-z-ones by ring opening of thiazoloberumidazolium and benzimidazobum salts and C-O bond cleavage of an alkoxide. <i>Journal of Organic Chemistry</i> , 2015 , 80, 3233-41 Chiroptical Properties of Cryptophane-223 and -233 Investigated by ECD, VCD, and ROA Spectroscopy. <i>Journal of Physical Chemistry B</i> , 2015 , 119, 8631-9 Revisiting the assembly of amino ester-based benzene-1,3,5-tricarboxamides: chiral rods in solution. <i>Chemical Communications</i> , 2015 , 51, 7397-400 H-adamantylphosphinates as universal precursors of P-stereogenic compounds. <i>Journal of Organic Chemistry</i> , 2015 , 80, 4132-41 Vibrational and electronic circular dichroism studies on the axially chiral pyridine-N-oxide: trans-2,6-di-ortho-tolyl-3,4,5-trimethylpyridine-N-oxide. <i>Tetrahedron: Asymmetry</i> , 2015 , 26, 1043-1049 Acid/base-triggered switching of circularly polarized luminescence and electronic circular dichroism in organic and organometallic helicenes. <i>Chemistry - A European Journal</i> , 2015 , 21, 1673-81 A forgotten chiral spiro compound revisited: 3,3Pdimethyl-3H,3PH-2,2Pspirobil[1,3]benzothiazole]. <i>Chiralby</i> , 2015 , 27, 716-21 Synthesis of Allenes Bearing Phosphine Oxide Groups and Investigation of Their Reactivity toward cold Complexes. <i>Advanced Synthesis and Catalysis</i> , 2015 , 357, 2213-2218 Stereospecific Synthesis of Hand Bhydroxyalkyl P-Stereogenic Phosphine-Boranes and Functionalized Derivatives: Evidence of the P=O Activation in the BH3 -Mediated Reduction. <i>Chemistry - A European Journal</i> , 2015 , 21, 15607-21 Is Molecular Chirality Connected to Supramolecular Chirality? The Particular Case of Chiral 2-Pyridyl Alcohols. <i>Crystal Growth and Design</i> , 2015 , 15, 935-945 Is Molecular Chirality Connected to Supramolecular Chirality? The Particular Case of Chiral 2-Pyridyl Alcohols. <i>Crystal Growth and Design</i> , 2015 , 15, 935-945 Two-photon absorption and two-photon circular dichroi

107	Synthesis and chiral recognition ability of helical polyacetylenes bearing helicene pendants. <i>Polymer Chemistry</i> , 2014 , 5, 4909	4.9	77
106	Static and dynamic properties of 1,1Pbi-2-naphthol and its conjugated acids and bases. <i>Chemistry - A European Journal</i> , 2014 , 20, 14816-25	4.8	9
105	Helicene-grafted vinyl- and carbene-osmium complexes: an example of acid-base chiroptical switching. <i>Chemical Communications</i> , 2014 , 50, 2854-6	5.8	33
104	Chiroptical properties of nona- and dodecamethoxy cryptophanes. <i>Journal of Organic Chemistry</i> , 2014 , 79, 6028-36	4.2	16
103	Raman optical activity of enantiopure cryptophanes. <i>Journal of Physical Chemistry B</i> , 2014 , 118, 5211-7	3.4	15
102	Aza[6]helicene platinum complexes: chirality control of cis-trans isomerism. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 5786-90	16.4	26
101	Straightforward access to mono- and bis-cycloplatinated helicenes that display circularly polarized phosphorescence using crystallization resolution methods. <i>Chemical Science</i> , 2014 , 5, 1915-1927	9.4	99
100	Double Transfer of Chirality in Organocopper-Mediated bis(Alkylating) Cycloisomerization of Enediynes. <i>Angewandte Chemie</i> , 2014 , 126, 3291-3295	3.6	7
99	Aza[6]helicene Platinum Complexes: Chirality Control of cis B rans Isomerism. <i>Angewandte Chemie</i> , 2014 , 126, 5896-5900	3.6	9
98	Ethylenedithio-tetrathiafulvalene-helicenes: electroactive helical precursors with switchable chiroptical properties. <i>Chemistry - A European Journal</i> , 2013 , 19, 13160-7	4.8	63
97	Chiroptical detectors for the study of unusual phenomena in chiral chromatography. <i>Topics in Current Chemistry</i> , 2013 , 340, 107-51		10
96	Chiroptical properties of carbo[6]helicene derivatives bearing extended £conjugated cyano substituents. <i>Chirality</i> , 2013 , 25, 455-65	2.1	31
95	(L)-(Trimethylsilyl)alanine synthesis exploiting hydroxypinanone-induced diastereoselective alkylation. <i>Amino Acids</i> , 2013 , 45, 301-7	3.5	19
94	Synthesis and reactivity of a cyclopentadienyl-indenyl ligand ring-coupled by a chiral bridge derived from ethyl (S)-(-) lactate. <i>Dalton Transactions</i> , 2013 , 42, 7980-90	4.3	4
93	Cellulose chiral induction during the synthesis of cellulose N-phthaloyl-amino acid esters. <i>Cellulose</i> , 2013 , 20, 2057-2067	5.5	0
92	Enantioselective syntheses of the proposed structures of kopeolin and kopeolone. <i>Chemistry - A European Journal</i> , 2013 , 19, 10632-42	4.8	4
91	Assembly of helicene-capped N,P,N,P,N-helicands within Cu(I) helicates: impacting chiroptical properties by ligand-ligand charge transfer. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 1968-7	7 ^{16.4}	37
90	Metathetic sulfur transfer mediated by N-(2-aminophenyl)-4-methyl-thiazolin-2-thione derivatives. Part III: An alkylthiol- and thioacid-free route to diversely substituted S-alkyl thioesters. Tetrahedron 2013 69 4994-5001	2.4	3

89	Attempts to separate (-)-thujone, (+)-thujone epimers from camphor enantiomers by enantioselective HPLC with polarimetric detection. <i>Journal of Separation Science</i> , 2013 , 36, 832-9	3.4	14
88	Atropisomerization in N-aryl-2(1H)-pyrimidin-(thi)ones: a ring-opening/rotation/ring-closure process in place of a classical rotation around the pivot bond. <i>Journal of Organic Chemistry</i> , 2013 , 78, 12577-84	4.2	9
87	Diastereo- and enantioselective synthesis of organometallic bis(helicene)s by a combination of C-H activation and dynamic isomerization. <i>Chemistry - A European Journal</i> , 2013 , 19, 16722-8	4.8	27
86	Novel phenyl(thio)ureas bearing (thio)oxothiazoline group as potential BACE-1 inhibitors: synthesis and biological evaluation. <i>Journal of Enzyme Inhibition and Medicinal Chemistry</i> , 2013 , 28, 153-62	5.6	2
85	Assembly of Helicene-Capped N,P,N,P,N-Helicands within CuI Helicates: Impacting Chiroptical Properties by Ligand Igand Charge Transfer. <i>Angewandte Chemie</i> , 2013 , 125, 2022-2026	3.6	16
84	A focus on the asymmetric synthesis of a novel threo-Ebenzyl-Ehydroxy aspartate analogue. <i>Tetrahedron: Asymmetry</i> , 2012 , 23, 94-99		8
83	Enantiomers of dimethyl [(2E)-1,3-diphenylprop-2-en-1-yl]propanedioate resulting from allylic alkylation reaction: elution order on major high-performance liquid chromatography chiral columns. <i>Journal of Chromatography A</i> , 2012 , 1269, 82-93	4.5	21
82	Atropisomeric Chiral Probes to Study the Supramolecular Organization in Porphyrin Self-Assemblies. <i>European Journal of Organic Chemistry</i> , 2012 , 2012, n/a-n/a	3.2	1
81	One-pot Crabb[homologation-radical cascade cyclisation with memory of chirality. <i>Chemical Communications</i> , 2012 , 48, 2549-51	5.8	34
80	Anisotropic organization and microscopic manipulation of self-assembling synthetic porphyrin microrods that mimic chlorosomes: bacterial light-harvesting systems. <i>Journal of the American Chemical Society</i> , 2012 , 134, 944-54	16.4	50
80 79	microrods that mimic chlorosomes: bacterial light-harvesting systems. Journal of the American	16.4 3·7	50
	microrods that mimic chlorosomes: bacterial light-harvesting systems. <i>Journal of the American Chemical Society</i> , 2012 , 134, 944-54 Asymmetric 4-aryl-1,4-dihydropyridines potentiate mutant cystic fibrosis transmembrane		
79	microrods that mimic chlorosomes: bacterial light-harvesting systems. <i>Journal of the American Chemical Society</i> , 2012 , 134, 944-54 Asymmetric 4-aryl-1,4-dihydropyridines potentiate mutant cystic fibrosis transmembrane conductance regulator (CFTR). <i>ChemMedChem</i> , 2012 , 7, 1799-807 Atropisomerism and Axial Chirality in Heteroaromatic Compounds. <i>Advances in Heterocyclic</i>	3.7	3
79 78	microrods that mimic chlorosomes: bacterial light-harvesting systems. <i>Journal of the American Chemical Society</i> , 2012 , 134, 944-54 Asymmetric 4-aryl-1,4-dihydropyridines potentiate mutant cystic fibrosis transmembrane conductance regulator (CFTR). <i>ChemMedChem</i> , 2012 , 7, 1799-807 Atropisomerism and Axial Chirality in Heteroaromatic Compounds. <i>Advances in Heterocyclic Chemistry</i> , 2012 , 1-188 Synthesis of Enantiopure tertiary skipped diynes via one-pot desymmetrizing TMS-cleavage.	3.7	3 78
79 78 77	microrods that mimic chlorosomes: bacterial light-harvesting systems. Journal of the American Chemical Society, 2012, 134, 944-54 Asymmetric 4-aryl-1,4-dihydropyridines potentiate mutant cystic fibrosis transmembrane conductance regulator (CFTR). ChemMedChem, 2012, 7, 1799-807 Atropisomerism and Axial Chirality in Heteroaromatic Compounds. Advances in Heterocyclic Chemistry, 2012, 1-188 Synthesis of Enantiopure tertiary skipped diynes via one-pot desymmetrizing TMS-cleavage. Organic Letters, 2012, 14, 3974-7 Mechanistic investigation of enediyne-connected amino ester rearrangement. Theoretical rationale for the exclusive preference for 1,6- or 1,5-hydrogen atom transfer depending on the substrate. A	3.7 2.4 6.2	3 78 5
79 78 77 76	microrods that mimic chlorosomes: bacterial light-harvesting systems. <i>Journal of the American Chemical Society</i> , 2012 , 134, 944-54 Asymmetric 4-aryl-1,4-dihydropyridines potentiate mutant cystic fibrosis transmembrane conductance regulator (CFTR). <i>ChemMedChem</i> , 2012 , 7, 1799-807 Atropisomerism and Axial Chirality in Heteroaromatic Compounds. <i>Advances in Heterocyclic Chemistry</i> , 2012 , 1-188 Synthesis of Enantiopure tertiary skipped diynes via one-pot desymmetrizing TMS-cleavage. <i>Organic Letters</i> , 2012 , 14, 3974-7 Mechanistic investigation of enediyne-connected amino ester rearrangement. Theoretical rationale for the exclusive preference for 1,6- or 1,5-hydrogen atom transfer depending on the substrate. A potential route to chiral naphthoazepines. <i>Journal of Organic Chemistry</i> , 2012 , 77, 2773-83 Rhenium complexes bearing phosphole-pyridine chelates: simple molecules with large chiroptical	3.7 2.4 6.2 4.2 5.8	378523
79 78 77 76 75	microrods that mimic chlorosomes: bacterial light-harvesting systems. <i>Journal of the American Chemical Society</i> , 2012 , 134, 944-54 Asymmetric 4-aryl-1,4-dihydropyridines potentiate mutant cystic fibrosis transmembrane conductance regulator (CFTR). <i>ChemMedChem</i> , 2012 , 7, 1799-807 Atropisomerism and Axial Chirality in Heteroaromatic Compounds. <i>Advances in Heterocyclic Chemistry</i> , 2012 , 1-188 Synthesis of Enantiopure tertiary skipped diynes via one-pot desymmetrizing TMS-cleavage. <i>Organic Letters</i> , 2012 , 14, 3974-7 Mechanistic investigation of enediyne-connected amino ester rearrangement. Theoretical rationale for the exclusive preference for 1,6- or 1,5-hydrogen atom transfer depending on the substrate. A potential route to chiral naphthoazepines. <i>Journal of Organic Chemistry</i> , 2012 , 77, 2773-83 Rhenium complexes bearing phosphole-pyridine chelates: simple molecules with large chiroptical properties. <i>Chemical Communications</i> , 2012 , 48, 6705-7	3.7 2.4 6.2 4.2 5.8	3 78 5 23 8

71	Resolution of protected silaproline for a gram scale preparation. <i>Amino Acids</i> , 2012 , 43, 649-55	3.5	14
70	Resolution and absolute configuration of some the minoacetals: en route to enantiopure N-protected the minoaldehydes. <i>Amino Acids</i> , 2012 , 43, 687-96	3.5	2
69	Chemoenzymatic dynamic kinetic resolution of primary amines catalyzed by CAL-B at 38-40 °C. Journal of Organic Chemistry, 2011 , 76, 7281-6	4.2	45
68	From hetero- to homochiral bis(metallahelicene)s based on a Pt(III)-Pt(III) bonded scaffold: isomerization, structure, and chiroptical properties. <i>Journal of the American Chemical Society</i> , 2011 , 133, 3800-3	16.4	75
67	New chiral cyclooctatriene-based polycyclic architectures. <i>Organic Letters</i> , 2011 , 13, 4450-3	6.2	8
66	Determination of the absolute configuration of 1,3,5-triphenyl-4,5-dihydropyrazole enantiomers by a combination of VCD, ECD measurements, and theoretical calculations. <i>Tetrahedron: Asymmetry</i> , 2011 , 22, 1120-1124		10
65	Multifunctional and reactive enantiopure organometallic helicenes: tuning chiroptical properties by structural variations of mono- and bis(platinahelicene)s. <i>Chemistry - A European Journal</i> , 2011 , 17, 1417	8 ⁴ 98	56
64	Geometric enantiomerism in cyclic compounds: chiral dibrominated 1,3-dioxanes. <i>Chirality</i> , 2011 , 23, 167-71	2.1	2
63	An efficient and recyclable hybrid nanocatalyst to promote enantioselective radical cascade rearrangements of enediynes. <i>Chemical Communications</i> , 2011 , 47, 5286-8	5.8	23
62	Inherently chiral phosphonatocavitands as artificial chemo- and enantio-selective receptors of natural ammoniums. <i>Organic and Biomolecular Chemistry</i> , 2011 , 9, 5086-91	3.9	24
61	Chiral bicyclo[3.3.1]-3,7-dioxanonane derivatives: Study of crystallization mode and conformational dynamics in solution. <i>Journal of Molecular Structure</i> , 2011 , 989, 20-30	3.4	2
60	Preparation of both enantiomers of a synthon for novel nucleoside analogs by enzymatic desymmetrization of a meso-diol with a methylene cyclopropane skeleton. <i>Tetrahedron Letters</i> , 2011 , 52, 1082-1085	2	14
59	Chiral separation of hesperidin and naringin and its analysis in a butanol extract of Launeae arborescens. <i>Natural Product Research</i> , 2010 , 24, 669-81	2.3	21
58	Memory of chirality in cascade rearrangements of enediynes. <i>Journal of the American Chemical Society</i> , 2010 , 132, 14742-4	16.4	39
57	Chiral oxorhenium(V) complexes as candidates for the experimental observation of molecular parity violation: a structural, synthetic and theoretical study. <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 8792-803	3.6	18
56	Ridge-tile-like chiral topology: synthesis, resolution, and complete chiroptical characterization of enantiomers of edge-sharing binuclear square planar complexes of Ni(II) bearing achiral ligands. <i>Journal of the American Chemical Society</i> , 2010 , 132, 10477-83	16.4	39
55	Switching from (R)- to (S)-selective chemoenzymatic DKR of amines involving sulfanyl radical-mediated racemization. <i>Organic and Biomolecular Chemistry</i> , 2010 , 8, 4165-8	3.9	28
54	Persistent mixed-valence [(TTF)2]+* dyad of a chiral bis(binaphthol)-tetrathiafulvalene (TTF) derivative. <i>Chemistry - A European Journal</i> , 2010 , 16, 8020-8	4.8	33

(2008-2010)

53	Chirality in dynamic supramolecular nanotubes induced by a chiral solvent. <i>Chemistry - A European Journal</i> , 2010 , 16, 173-7	4.8	61
52	Metallahelicenes: Easily Accessible Helicene Derivatives with Large and Tunable Chiroptical Properties. <i>Angewandte Chemie</i> , 2010 , 122, 103-106	3.6	40
51	Metallahelicenes: easily accessible helicene derivatives with large and tunable chiroptical properties. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 99-102	16.4	126
50	Hemisynthesis and odour properties of Ehydroxy-Elactones and precursors derived from linalool. <i>Food Chemistry</i> , 2010 , 121, 98-104	8.5	8
49	Metathetic sulfur transfer mediated by N-(2-aminophenyl)-4-methyl-thiazolin-2-thione derivatives: a route to diversely substituted S-alkylcarbamothioates. <i>Tetrahedron</i> , 2010 , 66, 1852-1858	2.4	3
48	The absolute configuration of an inherently chiral phosphonatocavitand and its use toward the enantioselective recognition of l-adrenaline. <i>Tetrahedron: Asymmetry</i> , 2010 , 21, 1534-1541		23
47	Synthesis, chiral separation, and absolute configuration of bis-(N-aryl) atropisomeric triads: 1,2-bis-[4-methyl-2-(thi)oxo-2,3-dihydrothiazol-3-yl]-benzene. <i>Chirality</i> , 2009 , 21, 160-6	2.1	6
46	Synthesis of (+)-striatene: confirmation of its stereostructure. <i>Tetrahedron Letters</i> , 2009 , 50, 5723-5725	2	4
45	Proteases screening for the kinetic resolution of amines with N-acyl mmino acid trifluoromethyl esters: automated docking approach of binding energies using Subtilisin Novo as a prototype for serine proteases. <i>Tetrahedron: Asymmetry</i> , 2009 , 20, 2823-2834		7
44	En route to (S)-selective chemoenzymatic dynamic kinetic resolution of aliphatic amines. One-pot KR/racemization/KR sequence leading to (S)-amides. <i>Journal of Organic Chemistry</i> , 2009 , 74, 2901-3	4.2	39
43	Mimics of the self-assembling chlorosomal bacteriochlorophylls: regio- and stereoselective synthesis and stereoanalysis of acyl(1-hydroxyalkyl)porphyrins. <i>Journal of the American Chemical Society</i> , 2009 , 131, 14480-92	16.4	29
42	Synthesis, structural analysis, and chiral investigations of some atropisomers with EE-tetrahalogeno-1,3-butadiene core. <i>Journal of Organic Chemistry</i> , 2009 , 74, 9062-70	4.2	24
41	New selective phosphodiesterase 4D inhibitors differently acting on long, short, and supershort isoforms. <i>Journal of Medicinal Chemistry</i> , 2009 , 52, 6546-57	8.3	37
40	Synthesis of some novel organic nitrates and comparative in vitro study of their vasodilator profile. Journal of Medicinal Chemistry, 2009 , 52, 4020-5	8.3	4
39	Metal-bis(helicene) assemblies incorporating pi-conjugated phosphole-azahelicene ligands: impacting chiroptical properties by metal variation. <i>Journal of the American Chemical Society</i> , 2009 , 131, 3183-5	16.4	120
38	Subtle chirality in oxo- and sulfidorhenium(v) complexes. Chemical Communications, 2009, 4841-3	5.8	20
37	N-acyl glycinates as acyl donors in serine protease-catalyzed kinetic resolution of amines. Improvement of selectivity and reaction rate. <i>Organic and Biomolecular Chemistry</i> , 2008 , 6, 3917-20	3.9	16
36	Highly efficient photochemically induced thiyl radical-mediated racemization of aliphatic amines at 30 degrees C. <i>Journal of Organic Chemistry</i> , 2008 , 73, 364-8	4.2	29

35	Synthesis of chiral primary amines: diastereoselective alkylation of N-[(1E)-alkylidene]-3,5-bis[(1S)-1-methoxyethyl]-4H-1,2,4-triazol-4-amines and N4\(\mathbb{M}\)exocyclic bond cleavage in the resulting 1,2,4-triazol-4-alkylamines. <i>Tetrahedron: Asymmetry</i> , 2008 , 19, 2682-2692		3
34	Optically active cyclopentadienyl and indenyl ligands obtained from lactic acid esters. <i>Journal of Organometallic Chemistry</i> , 2008 , 693, 23-32	2.3	3
33	Novel chromatographic resolution of chiral diacylglycerols and analysis of the stereoselective hydrolysis of triacylglycerols by lipases. <i>Analytical Biochemistry</i> , 2008 , 375, 196-208	3.1	34
32	Atropisomerism in the 2-arylimino-N-(2-hydroxyphenyl)thiazoline series: influence of hydrogen bonding on the racemization process. <i>Journal of Organic Chemistry</i> , 2008 , 73, 403-11	4.2	43
31	Highly selective enzymatic kinetic resolution of primary amines at 80 degrees C: a comparative study of carboxylic acids and their ethyl esters as acyl donors. <i>Journal of Organic Chemistry</i> , 2007 , 72, 6918-23	4.2	56
30	Dynamic kinetic resolution of amines involving biocatalysis and in situ free radical mediated racemization. <i>Organic Letters</i> , 2007 , 9, 837-9	6.2	81
29	First total synthesis and assignment of the stereochemistry of crispatenine. <i>Journal of Organic Chemistry</i> , 2007 , 72, 3770-5	4.2	14
28	HPLC on chiral support with polarimetric detection: application to conglomerate discovery. <i>Chirality</i> , 2007 , 19, 497-502	2.1	9
27	#Unsaturated diesters: radical acceptors in dialkylzinc-mediated tandem radical addition/aldol condensation. A straightforward synthesis of rac-nephrosteranic acid. <i>Tetrahedron</i> , 2007 , 63, 77-85	2.4	55
26	Chemoenzymatic synthesis of novel adenosine carbanucleoside analogues containing a locked 3?-methyl-2?,3?-Ebxirane-fused system. <i>Tetrahedron</i> , 2007 , 63, 5050-5055	2.4	4
25	HPLC separation and VCD spectroscopy of chiral pyrazoles derived from (5R)-dihydrocarvone. <i>Tetrahedron: Asymmetry</i> , 2007 , 18, 1911-1917		10
24	Synthesis, chiral HPLC resolution and configuration assignment of 1-phenylglyceryl trinitrate stereomers. <i>Chirality</i> , 2006 , 18, 430-6	2.1	6
23	Non-racemic atropisomeric (thio)ureas as neutral enantioselective anion receptors for amino-acid derivatives: origin of smaller Kass with thiourea than urea derivatives. <i>Chirality</i> , 2006 , 18, 762-71	2.1	34
22	Thiyl Radical Mediated Racemization of Benzylic Amines. <i>European Journal of Organic Chemistry</i> , 2006 , 2006, 3242-3250	3.2	29
21	Total Synthesis of Terpenoids Isolated from Caulerpale Algae and Their Inhibition of Tubulin Assembly. <i>Synthesis</i> , 2006 , 2006, 166-181	2.9	3
20	Chromatographic resolution, solution and crystal phase conformations, and absolute configuration of tert-butyl(dimethylamino)phenylphosphine-borane complex. <i>Journal of Organic Chemistry</i> , 2006 , 71, 5586-93	4.2	13
19	Synthesis and vibrational circular dichroism of enantiopure chiral oxorhenium(V) complexes containing the hydrotris(1-pyrazolyl)borate ligand. <i>Inorganic Chemistry</i> , 2006 , 45, 10230-9	5.1	28
18	Thiyl radical mediated racemization of nonactivated aliphatic amines. <i>Journal of Organic Chemistry</i> , 2006 , 71, 7288-92	4.2	58

LIST OF PUBLICATIONS

17	Caulerpenyne-colchicine hybrid: synthesis and biological evaluation. <i>Bioorganic and Medicinal Chemistry</i> , 2006 , 14, 5540-8	3.4	14
16	Enantioselective cyanosilylation of aldehydes catalysed by a diastereomeric mixture of atropisomeric thioureas. <i>Tetrahedron: Asymmetry</i> , 2006 , 17, 999-1006		24
15	Rearrangement of a 3-acyloxyamino-1,5-diketone into enamine and pyrrole: a mechanistic study. <i>Arkivoc</i> , 2006 , 2006, 42-54	0.9	2
14	Dialkylzinc mediated radical additions to chiral N-enoyloxazolidinones in the presence of benzaldehyde. Mechanistic investigation, structural characterization of the resulting Elactones. <i>Tetrahedron</i> , 2005 , 61, 4261-4274	2.4	58
13	Separation of atropisomeric 1,4,5,6-tetrahydropyrimidinium salts by chiral HPLC and determination of their enantiomerization barriers. <i>Journal of Chromatography A</i> , 2005 , 1069, 203-8	4.5	14
12	Enantiorecognition on solid chiral selectors using microbatch technology: an example of limitation in case of strong association in the racemate. <i>Biomedical Chromatography</i> , 2005 , 19, 434-8	1.7	15
11	Synthesis and absolute configuration assignment of 5-amino-1,3,5-triphenyl-pentane-1,3-diol stereoisomers. <i>Chirality</i> , 2005 , 17, 63-72	2.1	7
10	Structural characterization of artificial self-assembling porphyrins that mimic the natural chlorosomal bacteriochlorophylls c, d, and e. <i>Chemistry - A European Journal</i> , 2005 , 11, 2267-75	4.8	79
9	Synthesis, Chiral Separation, Barrier to Rotation and Absolute Configuration of N-(O-Functionalized-Aryl)-4-Alkyl-Thiazolin-2-One and Thiazoline-2-Thione Atropisomers. <i>Letters in Organic Chemistry</i> , 2005 , 2, 433-443	0.6	27
8	New route to 3-alkylthiazolo[3,2-a]benzimidazole derivatives. <i>Molecules</i> , 2005 , 10, 327-33	4.8	11
7	New 1,4-dihydropyridines endowed with NO-donor and calcium channel agonist properties. <i>Journal of Medicinal Chemistry</i> , 2004 , 47, 2688-93	8.3	38
6	Green Self-Assembling Porphyrins and Chlorins as Mimics of the Natural Bacteriochlorophylls c, d, and e. <i>European Journal of Organic Chemistry</i> , 2004 , 2004, 3919-3930	3.2	48
5	Chiral liquid chromatography contribution to the determination of the absolute configuration of enantiomers. <i>Journal of Chromatography A</i> , 2004 , 1037, 311-28	4.5	107
4	Controlling chirality and optical properties of artificial antenna systems with self-assembling porphyrins. <i>Angewandte Chemie - International Edition</i> , 2003 , 42, 2140-4	16.4	126
3	True or apparent reversal of elution order during chiral high-performance liquid chromatography monitored by a polarimetric detector under different mobile phase conditions. <i>Journal of Chromatography A</i> , 2003 , 995, 79-85	4.5	52
2	Use of lipase-catalyzed kinetic resolution for the enantioselective approach toward sesquiterpenes containing quaternary centers: the cuparane family. <i>Tetrahedron: Asymmetry</i> , 2003 , 14, 2413-2418		14
1	Contribution of chiral HPLC in tandem with polarimetric detection in the determination of absolute configuration by chemical interconversion method: Example in 1-(thi)oxothiazolinyl-3-(thi)oxothiazolinyl toluene atropisomer series. <i>Chirality</i> , 2002 , 14, 665-73	2.1	14