
Tomasz Ostrowski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8425360/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characteristics of Transfer RNA-Derived Fragments Expressed during Human Renal Cell Development: The Role of Dicer in tRF Biogenesis. International Journal of Molecular Sciences, 2022, 23, 3644.	4.1	15
2	Implications of Oxidative Stress in Glioblastoma Multiforme Following Treatment with Purine Derivatives. Antioxidants, 2021, 10, 950.	5.1	14
3	7-(β-d-Ribofuranosyl)-3-methylguanine: Synthesis from guanine and comparative multinuclear NMR studies. Journal of Molecular Structure, 2021, , 131911.	3.6	0
4	7â€(βâ€ <scp>D</scp> â€Ribofuranosyl)guanine and its Analogues Modified in the Sugar Portion: Synthesis and Antiglioma Properties. ChemistrySelect, 2020, 5, 13370-13375.	1.5	2
5	Multinuclear magnetic resonance characterization and antiproliferative studies of novel dichlorido platinum(II) complexes containing kinetin riboside and 1-β-d-ribofuranosyl-4-(2-pyridyl)-1H-1,2,3-triazole. Polyhedron, 2020, 180, 114428.	2.2	3
6	Comparative analysis of stability of tricyclic analogues of acyclovir in an acidic environment. Reaction Kinetics, Mechanisms and Catalysis, 2019, 127, 283-299.	1.7	2
7	Studies on structure of kinetin riboside and its analogues by variable-temperature NMR. Journal of Molecular Structure, 2019, 1195, 110-118.	3.6	4
8	Anti-CyHV-3 effect of fluorescent, tricyclic derivative of acyclovir 6-(4-MeOPh)-TACV <i>in vitro</i> . Journal of Veterinary Research (Poland), 2019, 63, 513-518.	1.0	6
9	Acyclovir inhibits Cyprinid herpesvirus 3 multiplication inÂvitro. Journal of Fish Diseases, 2018, 41, 1709-1718.	1.9	17
10	Alkylation of 9â€substituted guanine derivatives with α,ωâ€dihaloalkanes. Heteroatom Chemistry, 2017, 28, .	0.7	2
11	2-Aryl-8-aza-3-deazaadenosine analogues of 5′-O-[N-(salicyl)sulfamoyl]adenosine: Nucleoside antibiotics that block siderophore biosynthesis in Mycobacterium tuberculosis. Bioorganic and Medicinal Chemistry, 2016, 24, 3133-3143.	3.0	18
12	HPLC and HPLC/MS/MS Studies on Stress, Accelerated and Intermediate Degradation Tests of Antivirally Active Tricyclic Analog of Acyclovir. Journal of AOAC INTERNATIONAL, 2015, 98, 1240-1247.	1.5	2
13	Bioactive nucleoside analogues possessing selected five-membered azaheterocyclic bases. European Journal of Medicinal Chemistry, 2015, 97, 409-418.	5.5	31
14	Antivirally Active Ribavirin Analogues – 4,5-disubstituted 1,2,3-triazole Nucleosides: Biological Evaluation against Certain Respiratory Viruses and Computational Modelling. Antiviral Chemistry and Chemotherapy, 2014, 23, 161-171.	0.6	41
15	Ester Groups as Carriers of Antivirally Active Tricyclic Analogue of Acyclovir in Prodrugs Designing: Synthesis, Lipophilicity – Comparative Statistical Study of the Chromatographic and Theoretical Methods, Validation of the HPLC Method. Combinatorial Chemistry and High Throughput Screening, 2014. 17. 639-650.	1.1	5
16	5-Ethynyl-1-β-d-ribofuranosyl-1H-[1,2,3]triazole-4-carboxylic acid amide (ETCAR) and its analogues: Synthesis and cytotoxic properties. Bioorganic and Medicinal Chemistry, 2011, 19, 4386-4398.	3.0	28
17	Synthesis and anti-VZV activity of 6-heteroaryl derivatives of tricyclic acyclovir and 9-{[cis-1′,2′-bis(hydroxymethyl)cycloprop-1′-yl]methyl}guanine analogues. European Journal of Medicinal Chemistry, 2009, 44, 3313-3317.	5.5	26
18	Aminoacyl-tRNA Synthetase Inhibitors as Potent and Synergistic Immunosuppressants. Journal of Medicinal Chemistry, 2008, 51, 3020-3029.	6.4	28

Tomasz Ostrowski

#	Article	IF	CITATIONS
19	Synthesis of 5-ethynyl-1-Â-D-ribofuranosyl-1H-[1,2,3]triazole-4-carboxylic acid amide (isosteric to EICAR) and its derivatives. Nucleic Acids Symposium Series, 2008, 52, 585-586.	0.3	6
20	Synthesis and biological activity of tricyclic analogues of 9-{[cis-1′,2′-bis(hydroxymethyl)cycloprop-1′-yl]methyl}guanine. Bioorganic and Medicinal Chemistry, 20 14, 3535-3542.	063.0	15
21	Tricyclic nucleoside analogues as antiherpes agents. Antiviral Research, 2006, 71, 134-140.	4.1	31
22	Fluorosubstitution and 7-alkylation as prospective modifications of biologically active 6-aryl derivatives of tricyclic acyclovir and ganciclovir analogues. Bioorganic and Medicinal Chemistry, 2005, 13, 2089-2096.	3.0	15
23	Spectral and photophysical properties of some imidazo[1,2-a]purine derivatives related to acyclovir. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 163, 171-180.	3.9	8
24	Sugar Conformational Effects on the Photochemistry of Thymidylyl(3â€~-5â€~)thymidine. Journal of Organic Chemistry, 2003, 68, 6502-6510.	3.2	33
25	The ThermalN9/N7 Isomerization ofN2-Acylated 2′-Deoxyguanosine Derivatives in the Melt and in Solution. Helvetica Chimica Acta, 2002, 85, 388-398.	1.6	10
26	Pronounced cytostatic activity and bystander effect of a novel series of fluorescent tricyclic acyclovir and ganciclovir derivatives in herpes simplex virus thymidine kinase gene-transduced tumor cell lines. Gene Therapy, 2002, 9, 1173-1182.	4.5	23
27	Fluorescent Tricyclic Analogues of Acyclovir and Ganciclovir. A Structureâ°'Antiviral Activity Study. Journal of Medicinal Chemistry, 2001, 44, 4284-4287.	6.4	46
28	Substituent — Directed Aralkylation and Alkylation Reactions of the Tricyclic Analogues of Acyclovir and Guanosine. Nucleosides, Nucleotides and Nucleic Acids, 2000, 19, 1911-1929.	1.1	9
29	A Convenient Approach to N-3 Alkylation of 9-Substituted Guanines. Nucleosides & Nucleotides, 1999, 18, 565-567.	0.5	1
30	The isomerization of 2'-deoxyguanosine and the incorporation of guanine N7-(2'-deoxy-β-D-ribonucleoside) into oligonucleotide duplexes. , 1999, , .		1
31	Aralkylation reactions of 3,9-dihydro-3-R1-6-R2-9-oxo-5H-imidazo[1,2-a]purines directed by substituents in 3 and 6 positions. , 1999, , .		0
32	Exploring the active site of herpes simplex virus type-1 thymidine kinase by X-ray crystallography of complexes with aciclovir and other ligands. , 1998, 32, 350-361.		123
33	5-Substituted Pyrimidines with a 1,5-Anhydro-2,3-dideoxy-d-arabino-hexitol Moiety at N-1:Â Synthesis, Antiviral Activity, Conformational Analysis, and Interaction with Viral Thymidine Kinase. Journal of Medicinal Chemistry, 1998, 41, 4343-4353.	6.4	50
34	Oxidative cleavage of the tricyclic derivatives of 9-substituted guanines. Collection of Czechoslovak Chemical Communications, 1996, 61, 38-41.	1.0	2
35	Tricyclic Analogs of Acyclovir and Ganciclovir. Influence of Substituents in the Heterocyclic Moiety on the Antiviral Activity. Journal of Medicinal Chemistry, 1994, 37, 3187-3190.	6.4	42
36	2-Bromowyosine and related compounds. Probing the effects of simultaneous presence of syn and anti directing substituents. Collection of Czechoslovak Chemical Communications, 1993, 58, 56-59.	1.0	1

#	Article	IF	CITATIONS
37	Synthesis of acyclowyosine and acyclo-3-methylguanosine, as probes for some chemical and biological properties resulting from the N-3 substitution of guanosine and its analogues. Journal of the Chemical Society Perkin Transactions 1, 1991, , 589.	0.9	19
38	Chemical synthesis and spontaneous glycosidic hydrolysis of 3-methyl-2′-deoxyguanosine and 2′-deoxywyosine [1]. Nucleic Acids Research, 1990, 18, 4779-4782.	14.5	9
39	Ribosylation of 3-Methylguanine and the Relative Stability of its 7- and 9-α-D-Ribofuranosides. Nucleosides & Nucleotides, 1989, 8, 1271-1280.	0.5	4