Pan Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8425174/publications.pdf

Version: 2024-02-01

149	12,711	53 h-index	108
papers	citations		g-index
155	155	155	18538
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A novel aptamer-based small RNA delivery platform and its application to cancer therapy. Genes and Diseases, 2023, 10, 1075-1089.	1.5	2
2	A novel clinically relevant graft-versus-leukemia model in humanized mice. Journal of Leukocyte Biology, 2022, 111, 427-437.	1.5	4
3	Pharmacological or genetic inhibition of hypoxia signaling attenuates oncogenic RAS-induced cancer phenotypes. DMM Disease Models and Mechanisms, 2022, 15, .	1.2	6
4	Treatment with soluble CD24 attenuates COVID-19-associated systemic immunopathology. Journal of Hematology and Oncology, 2022, 15, 5.	6.9	30
5	Efficacy and safety of CD24Fc in hospitalised patients with COVID-19: a randomised, double-blind, placebo-controlled, phase 3 study. Lancet Infectious Diseases, The, 2022, 22, 611-621.	4.6	22
6	Targeting HIF-1Î \pm abrogates PD-L1â \in "mediated immune evasion in tumor microenvironment but promotes tolerance in normal tissues. Journal of Clinical Investigation, 2022, 132, .	3.9	42
7	CD24Fc ameliorates immune-related adverse events while preserving anti-tumor therapeutic effect. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	7
8	Microsatellite instability status differentially associates with intratumoral immune microenvironment in human cancers. Briefings in Bioinformatics, 2021, 22, .	3.2	22
9	MYC oncogene is associated with suppression of tumor immunity and targeting Myc induces tumor cell immunogenicity for therapeutic whole cell vaccination. , 2021, 9, e001388.		33
10	Targeting the HIF-1α-IGFBP2 axis therapeutically reduces IGF1-AKT signaling and blocks the growth and metastasis of relapsed anaplastic Wilms tumor. Oncogene, 2021, 40, 4809-4819.	2.6	12
11	The HIF1α-PDGFD-PDGFRα axis controls glioblastoma growth at normoxia/mild-hypoxia and confers sensitivity to targeted therapy by echinomycin. Journal of Experimental and Clinical Cancer Research, 2021, 40, 278.	3.5	25
12	Preserving the CTLA-4 Checkpoint for Safer and More Effective Cancer Immunotherapy. Trends in Pharmacological Sciences, 2020, 41, 4-12.	4.0	82
13	Liposomal formulation of HIF- $1\hat{l}\pm$ inhibitor echinomycin eliminates established metastases of triple-negative breast cancer. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 29, 102278.	1.7	32
14	Structure of CTLA-4 complexed with a pH-sensitive cancer immunotherapeutic antibody. Cell Discovery, 2020, 6, 79.	3.1	6
15	CD24Fc protects against viral pneumonia in simian immunodeficiency virus-infected Chinese rhesus monkeys. Cellular and Molecular Immunology, 2020, 17, 887-888.	4.8	33
16	Therapeutic targeting of TP53-mutated acute myeloid leukemia by inhibiting HIF-1 \hat{l} ± with echinomycin. Oncogene, 2020, 39, 3015-3027.	2.6	25
17	Mechanism- and Immune Landscape-Based Ranking of Therapeutic Responsiveness of 22 Major Human Cancers to Next Generation Anti-CTLA-4 Antibodies. Cancers, 2020, 12, 284.	1.7	9
18	Amplification of the CD24 Gene Is an Independent Predictor for Poor Prognosis of Breast Cancer. Frontiers in Genetics, 2019, 10, 560.	1.1	19

#	Article	IF	CITATIONS
19	Hijacking antibody-induced CTLA-4 lysosomal degradation for safer and more effective cancer immunotherapy. Cell Research, 2019, 29, 609-627.	5.7	74
20	T Regulatory Cells and Priming the Suppressive Tumor Microenvironment. Frontiers in Immunology, 2019, 10, 2453.	2.2	156
21	En masse discovery of anti-cancer human monoclonal antibodies by de novo assembly of immunoglobulin sequences from transcriptomes and genome sequences of cancer tissues. Cellular and Molecular Immunology, 2019, 16, 943-945.	4.8	1
22	<i>MYC</i> Drives Group 3 Medulloblastoma through Transformation of Sox2+ Astrocyte Progenitor Cells. Cancer Research, 2019, 79, 1967-1980.	0.4	29
23	Siglec genes confer resistance to systemic lupus erythematosus in humans and mice. Cellular and Molecular Immunology, 2019, 16, 154-164.	4.8	20
24	Uncoupling therapeutic from immunotherapy-related adverse effects for safer and effective anti-CTLA-4 antibodies in CTLA4 humanized mice. Cell Research, 2018, 28, 433-447.	5.7	91
25	A reappraisal of CTLA-4 checkpoint blockade in cancer immunotherapy. Cell Research, 2018, 28, 416-432.	5.7	188
26	Anti-CTLA-4 antibodies in cancer immunotherapy: selective depletion of intratumoral regulatory T cells or checkpoint blockade?. Cell and Bioscience, 2018, 8, 30.	2.1	88
27	CD24–p53 axis suppresses diethylnitrosamine-induced hepatocellular carcinogenesis by sustaining intrahepatic macrophages. Cell Discovery, 2018, 4, 6.	3.1	14
28	The CD24-Siglec G axis protects mice against cuprizone-induced oligodendrocyte loss: targeting danger signal for neuroprotection. Cellular and Molecular Immunology, 2018, 15, 79-81.	4.8	6
29	How Does an Anti-CTLA-4 Antibody Promote Cancer Immunity?. Trends in Immunology, 2018, 39, 953-956.	2.9	55
30	Regulation of Pathogenic T Helper 17 Cell Differentiation by Steroid Receptor Coactivator-3. Cell Reports, 2018, 23, 2318-2329.	2.9	31
31	CD24 and Fc fusion protein protects SIVmac239-infected Chinese rhesus macaque against progression to AIDS. Antiviral Research, 2018, 157, 9-17.	1.9	32
32	Tumor cells versus host immune cells: whose PD-L1 contributes to PD-1/PD-L1 blockade mediated cancer immunotherapy?. Cell and Bioscience, 2018, 8, 34.	2.1	83
33	IL-27 gene therapy induces depletion of Tregs and enhances the efficacy of cancer immunotherapy. JCI Insight, 2018, 3, .	2.3	42
34	Trap1a is an X-linked and cell-intrinsic regulator of thymocyte development. Cellular and Molecular Immunology, 2017, 14, 685-692.	4.8	4
35	An aptamer-based targeted delivery of miR-26a protects mice against chemotherapy toxicity while suppressing tumor growth. Blood Advances, 2017, 1, 1107-1119.	2.5	14
36	MYCN Amplification Is Associated with Repressed Cellular Immunity in Neuroblastoma: An In Silico Immunological Analysis of TARGET Database. Frontiers in Immunology, 2017, 8, 1473.	2.2	52

#	Article	IF	CITATIONS
37	A population of innate myelolymphoblastoid effector cell expanded by inactivation of mTOR complex 1 in mice. ELife, 2017, 6, .	2.8	5
38	The MicroRNA-183-96-182 Cluster Promotes T Helper 17 Cell Pathogenicity by Negatively Regulating Transcription Factor Foxo1 Expression. Immunity, 2016, 44, 1284-1298.	6.6	145
39	Fbxo30 Regulates Mammopoiesis by Targeting the Bipolar Mitotic Kinesin Eg5. Cell Reports, 2016, 15, 1111-1122.	2.9	6
40	A Critical Role for the Regulated Wnt–Myc Pathway in Naive T Cell Survival. Journal of Immunology, 2015, 194, 158-167.	0.4	32
41	Myeloid cell TRAF3 promotes metabolic inflammation, insulin resistance, and hepatic steatosis in obesity. American Journal of Physiology - Endocrinology and Metabolism, 2015, 308, E460-E469.	1.8	30
42	An mTORC1-Mdm2-Drosha Axis for miRNA Biogenesis in Response to Glucose- and Amino Acid-Deprivation. Molecular Cell, 2015, 57, 708-720.	4.5	72
43	FOXP3 Controls an miR-146/NF-κB Negative Feedback Loop That Inhibits Apoptosis in Breast Cancer Cells. Cancer Research, 2015, 75, 1703-1713.	0.4	109
44	The Methylcytosine Dioxygenase Tet2 Promotes DNA Demethylation and Activation of Cytokine Gene Expression in T Cells. Immunity, 2015, 42, 613-626.	6.6	264
45	Intracellular CD24 disrupts the ARF–NPM interaction and enables mutational and viral oncogene-mediated p53 inactivation. Nature Communications, 2015, 6, 5909.	5.8	54
46	Broad and direct interaction between TLR and Siglec families of pattern recognition receptors and its regulation by Neu1. ELife, 2014, 3, e04066.	2.8	117
47	Siglec-G/10 in self-nonself discrimination of innate and adaptive immunity. Glycobiology, 2014, 24, 800-806.	1.3	70
48	Deletion of CD24 Impairs Development of Heat Shock Protein gp96â€"Driven Autoimmune Disease through Expansion of Myeloid-Derived Suppressor Cells. Journal of Immunology, 2014, 192, 5679-5686.	0.4	15
49	Echinomycin protects mice against relapsed acute myeloid leukemia without adverse effect on hematopoietic stem cells. Blood, 2014, 124, 1127-1135.	0.6	55
50	Siglec-G–CD24 axis controls the severity of graft-versus-host disease in mice. Blood, 2014, 123, 3512-3523.	0.6	76
51	Ribosomal protein S27-like is a physiological regulator of p53 that suppresses genomic instability and tumorigenesis. ELife, 2014, 3, e02236.	2.8	41
52	Laforin Prevents Stress-Induced Polyglucosan Body Formation and Lafora Disease Progression in Neurons. Molecular Neurobiology, 2013, 48, 49-61.	1.9	19
53	FOXP3: Genetic and epigenetic implications for autoimmunity. Journal of Autoimmunity, 2013, 41, 72-78.	3.0	60
54	Cytopenia and autoimmune diseases: A vicious cycle fueled by mTOR dysregulation in hematopoietic stem cells. Journal of Autoimmunity, 2013, 41, 182-187.	3.0	27

#	Article	IF	CITATIONS
55	Induction of Siglec-G by RNA Viruses Inhibits the Innate Immune Response by Promoting RIG-I Degradation. Cell, 2013, 152, 467-478.	13.5	228
56	<i>FOXP3</i> Regulates Sensitivity of Cancer Cells to Irradiation by Transcriptional Repression of <i>BRCA1</i> . Cancer Research, 2013, 73, 2170-2180.	0.4	22
57	A Critical Role for <i>Rictor</i> in T Lymphopoiesis. Journal of Immunology, 2012, 189, 1850-1857.	0.4	42
58	Integrated Analysis Reveals Critical Genomic Regions in Prostate Tumor Microenvironment Associated with Clinicopathologic Phenotypes. Clinical Cancer Research, 2012, 18, 1578-1587.	3.2	34
59	CD24 on thymic APCs regulates negative selection of myelin antigenâ€specific T lymphocytes. European Journal of Immunology, 2012, 42, 924-935.	1.6	9
60	Laforin is required for the functional activation of malin in endoplasmic reticulum stress resistance in neuronal cells. FEBS Journal, 2012, 279, 2467-2478.	2.2	18
61	A hypermorphic SP1-binding CD24 variant associates with risk and progression of multiple sclerosis. American Journal of Translational Research (discontinued), 2012, 4, 347-56.	0.0	15
62	FOXP3 Orchestrates H4K16 Acetylation and H3K4 Trimethylation for Activation of Multiple Genes by Recruiting MOF and Causing Displacement of PLU-1. Molecular Cell, 2011, 44, 770-784.	4.5	67
63	Targeting HIF1α Eliminates Cancer Stem Cells in Hematological Malignancies. Cell Stem Cell, 2011, 8, 399-411.	5.2	368
64	Identification of a Tumor Suppressor Relay between the FOXP3 and the Hippo Pathways in Breast and Prostate Cancers. Cancer Research, 2011, 71, 2162-2171.	0.4	89
65	Sialoside-based pattern recognitions discriminating infections from tissue injuries. Current Opinion in Immunology, 2011, 23, 41-45.	2.4	24
66	Protein aggregation of SERCA2 mutants associated with Darier disease elicits ER stress and apoptosis in keratinocytes. Journal of Cell Science, 2011, 124, 3568-3580.	1.2	30
67	The Tuberous Sclerosis Complex–Mammalian Target of Rapamycin Pathway Maintains the Quiescence and Survival of Naive T Cells. Journal of Immunology, 2011, 187, 1106-1112.	0.4	80
68	Amelioration of sepsis by inhibiting sialidase-mediated disruption of the CD24-SiglecG interaction. Nature Biotechnology, 2011, 29, 428-435.	9.4	158
69	On self-nonself discrimination in pattern recognition. Science China Life Sciences, 2010, 53, 169-171.	2.3	8
70	X-linked tumor suppressors: perplexing inheritance, a unique therapeutic opportunity. Trends in Genetics, 2010, 26, 260-265.	2.9	22
71	Transgenic Expression of P1A Induced Thymic Tumor: A Role for Onco-Fetal Antigens in Tumorigenesis. PLoS ONE, 2010, 5, e13439.	1.1	2
72	Signalling through FOXP3 as an X-linked tumor suppressor. International Journal of Biochemistry and Cell Biology, 2010, 42, 1784-1787.	1.2	23

#	Article	IF	Citations
73	CD24: from A to Z. Cellular and Molecular Immunology, 2010, 7, 100-103.	4.8	325
74	Mammalian target of rapamycin activation underlies HSC defects in autoimmune disease and inflammation in mice. Journal of Clinical Investigation, 2010, 120, 4091-4101.	3.9	93
75	FOXP3 as an X-linked tumor suppressor. Discovery Medicine, 2010, 10, 322-8.	0.5	18
76	Targeting lymphotoxin-mediated negative selection to prevent prostate cancer in mice with genetic predisposition. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17134-17139.	3.3	17
77	B7 Blockade Alters the Balance between Regulatory T Cells and Tumor-reactive T Cells for Immunotherapy of Cancer. Clinical Cancer Research, 2009, 15, 960-970.	3.2	13
78	Deletions and missense mutations of EPM2A exacerbate unfolded protein response and apoptosis of neuronal cells induced by endoplasm reticulum stress. Human Molecular Genetics, 2009, 18, 2622-2631.	1.4	27
79	FOXP3 Up-regulates <i>p21</i> Expression by Site-Specific Inhibition of Histone Deacetylase 2/Histone Deacetylase 4 Association to the Locus. Cancer Research, 2009, 69, 2252-2259.	0.4	97
80	The axis of mTOR-mitochondria-ROS and stemness of the hematopoietic stem cells. Cell Cycle, 2009, 8, 1158-1160.	1.3	61
81	mTOR Regulation and Therapeutic Rejuvenation of Aging Hematopoietic Stem Cells. Science Signaling, 2009, 2, ra75.	1.6	569
82	CD24 and Siglec-10 Selectively Repress Tissue Damage–Induced Immune Responses. Science, 2009, 323, 1722-1725.	6.0	670
83	Activating Transcription Factor 2 and c-Jun–Mediated Induction of FoxP3 for Experimental Therapy of Mammary Tumor in the Mouse. Cancer Research, 2009, 69, 5954-5960.	0.4	32
84	Somatic Single Hits Inactivate the X-Linked Tumor Suppressor FOXP3 in the Prostate. Cancer Cell, 2009, 16, 336-346.	7.7	190
85	Selective elimination of autoreactive T cells in vivo by the regulatory T cells. Clinical Immunology, 2009, 130, 61-73.	1.4	5
86	CD24 polymorphisms affect risk and progression of chronic hepatitis B virus infection. Hepatology, 2009, 50, 735-742.	3.6	39
87	CD24-Siglec G/10 discriminates danger- from pathogen-associated molecular patterns. Trends in Immunology, 2009, 30, 557-561.	2.9	122
88	FoxP3: a life beyond regulatory T cells. International Journal of Clinical and Experimental Pathology, 2009, 2, 205-10.	0.5	1
89	αâ€Lactosylceramide as a Novel "Sugarâ€Capped―CD1d Ligand for Natural Killer T Cells: Biased Cytokine Profile and Therapeutic Activities. ChemBioChem, 2008, 9, 1423-1430.	1.3	22
90	FOXP3 Is an X-Linked Breast Cancer Suppressor Gene and an Important Repressor of the HER-2/ErbB2 Oncogene. Cell, 2008, 134, 546.	13.5	2

#	Article	IF	CITATIONS
91	TSC–mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species. Journal of Experimental Medicine, 2008, 205, 2397-2408.	4.2	615
92	Cutting Edge: Broad Expression of the FoxP3 Locus in Epithelial Cells: A Caution against Early Interpretation of Fatal Inflammatory Diseases following In Vivo Depletion of FoxP3-Expressing Cells. Journal of Immunology, 2008, 180, 5163-5166.	0.4	118
93	Dendritic cells in the thymus contribute to T-regulatory cell induction. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19869-19874.	3.3	265
94	Homeostatic Proliferation in the Mice with Germline FoxP3 Mutation and its Contribution to Fatal Autoimmunity. Journal of Immunology, 2008, 181, 2399-2406.	0.4	30
95	Laforin Negatively Regulates Cell Cycle Progression through Glycogen Synthase Kinase 3Î ² -Dependent Mechanisms. Molecular and Cellular Biology, 2008, 28, 7236-7244.	1.1	20
96	Laforin Confers Cancer Resistance to Energy Deprivation–Induced Apoptosis. Cancer Research, 2008, 68, 4039-4044.	0.4	15
97	A Role for Cytoplasmic PML in Cellular Resistance to Viral Infection. PLoS ONE, 2008, 3, e2277.	1.1	38
98	Modulation of NKT Cell Development by B7-CD28 Interaction: An Expanding Horizon for Costimulation. PLoS ONE, 2008, 3, e2703.	1.1	24
99	Tumor Growth Decreases NK and B Cells as well as Common Lymphoid Progenitor. PLoS ONE, 2008, 3, e3180.	1.1	22
100	TSC-mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species. Journal of Cell Biology, 2008, 183, i1-i1.	2.3	0
101	Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes and Development, 2007, 21, 2747-2761.	2.7	2,487
102	A Dinucleotide Deletion in CD24 Confers Protection against Autoimmune Diseases. PLoS Genetics, 2007, 3, e49.	1.5	70
103	<i>FOXP3</i> and breast cancer: implications for therapy and diagnosis. Pharmacogenomics, 2007, 8, 1485-1487.	0.6	14
104	B7-Deficient Autoreactive T Cells Are Highly Susceptible to Suppression by CD4+CD25+ Regulatory T Cells. Journal of Immunology, 2007, 178, 1542-1552.	0.4	13
105	Immune competence of cancer-reactive T cells generated de novo in adult tumor-bearing mice. Blood, 2007, 109, 253-258.	0.6	2
106	FOXP3 Is an X-Linked Breast Cancer Suppressor Gene and an Important Repressor of the HER-2/ErbB2 Oncogene. Cell, 2007, 129, 1275-1286.	13.5	350
107	CD24: a genetic checkpoint in T cell homeostasis and autoimmune diseases. Trends in Immunology, 2007, 28, 315-320.	2.9	76
108	Siglecg Limits the Size of B1a B Cell Lineage by Down-Regulating NFκB Activation. PLoS ONE, 2007, 2, e997.	1.1	50

#	Article	IF	CITATIONS
109	FOXP3 is a novel transcriptional repressor for the breast cancer oncogene SKP2. Journal of Clinical Investigation, 2007, 117, 3765-73.	3.9	201
110	Harnessing the regulatory feedback to T cells to enhance antitumor immune responses. Drug Discovery Today: Therapeutic Strategies, 2006, 3, 31-34.	0.5	0
111	Tumor growth impedes natural-killer-cell maturation in the bone marrow. Blood, 2006, 108, 246-252.	0.6	79
112	Cutaneous marginal zone B-cell lymphoma in the setting of fluoxetine therapy: a hypothesis regarding pathogenesis based on in vitro suppression of T-cell-proliferative response. Journal of Cutaneous Pathology, 2006, 33, 522-528.	0.7	28
113	Epm2a suppresses tumor growth in an immunocompromised host by inhibiting Wnt signaling. Cancer Cell, 2006, 10, 179-190.	7.7	54
114	FoxP3: A genetic link between immunodeficiency and autoimmune diseases. Autoimmunity Reviews, 2006, 5, 399-402.	2.5	33
115	Different Lineages of P1A-Expressing Cancer Cells Use Divergent Modes of Immune Evasion for T-Cell Adoptive Therapy. Cancer Research, 2006, 66, 8241-8249.	0.4	26
116	Dimerization of Laforin Is Required for Its Optimal Phosphatase Activity, Regulation of GSK3 \hat{l}^2 Phosphorylation, and Wnt Signaling*. Journal of Biological Chemistry, 2006, 281, 34768-34774.	1.6	43
117	Massive and destructive T cell response to homeostatic cue in CD24-deficient lymphopenic hosts. Journal of Experimental Medicine, 2006, 203, 1713-1720.	4.2	41
118	Combination Therapy with Anti–CTL Antigen-4 and Anti-4-1BB Antibodies Enhances Cancer Immunity and Reduces Autoimmunity. Cancer Research, 2006, 66, 7276-7284.	0.4	165
119	Anti–human CTLA-4 monoclonal antibody promotes T-cell expansion and immunity in a hu-PBL-SCID model: a new method for preclinical screening of costimulatory monoclonal antibodies. Blood, 2005, 105, 1114-1120.	0.6	27
120	Human CTLA4 knock-in mice unravel the quantitative link between tumor immunity and autoimmunity induced by anti–CTLA-4 antibodies. Blood, 2005, 106, 3127-3133.	0.6	100
121	The Scurfy mutation of FoxP3 in the thymus stroma leads to defective thymopoiesis. Journal of Experimental Medicine, 2005, 202, 1141-1151.	4.2	93
122	A Rare Transporter Associated with Antigen Processing Polymorphism Overpresented in HLAlow Colon Cancer Reveals the Functional Significance of the Signature Domain in Antigen Processing. Clinical Cancer Research, 2005, 11 , 3614 - 3623 .	3.2	14
123	CD24 in Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis: Targeting Redundancy for Immunotherapy?. Current Immunology Reviews, 2005, 1, 173-176.	1.2	1
124	CD24 Controls Expansion and Persistence of Autoreactive T Cells in the Central Nervous System during Experimental Autoimmune Encephalomyelitis. Journal of Experimental Medicine, 2004, 200, 447-458.	4.2	89
125	CD24 Expression on T Cells Is Required for Optimal T Cell Proliferation in Lymphopenic Host. Journal of Experimental Medicine, 2004, 200, 1083-1089.	4.2	107
126	A new role for CD28 in the survival of autoreactive T cells in the periphery after chronic exposure to autoantigen. International Immunology, 2004, 16, 1403-1409.	1.8	1

#	ARTICLE	IF	CITATIONS
127	B7-CD28 Interaction Promotes Proliferation and Survival but Suppresses Differentiation of CD4â^'CD8â^' T Cells in the Thymus. Journal of Immunology, 2004, 173, 2253-2261.	0.4	18
128	Expression of tissue-specific autoantigens in the hematopoietic cells leads to activation-induced cell death of autoreactive T cells in the secondary lymphoid organs. European Journal of Immunology, 2004, 34, 3126-3134.	1.6	30
129	CIITA-regulated plexin-A1 affects T-cell–dendritic cell interactions. Nature Immunology, 2003, 4, 891-898.	7.0	129
130	Why Are Mice with Targeted Mutation of Coâ€Stimulatory Molecules Prone to Autoimmune Disease?. Annals of the New York Academy of Sciences, 2003, 987, 307-308.	1.8	0
131	Central Tolerance in a Prostate Cancer Model TRAMP Mouse. Annals of the New York Academy of Sciences, 2003, 987, 322-323.	1.8	0
132	B7DC/PDL2 Promotes Tumor Immunity by a PD-1–independent Mechanism. Journal of Experimental Medicine, 2003, 197, 1721-1730.	4.2	130
133	A Single-nucleotide Deletion Leads to Rapid Degradation of TAP-1 mRNA in a Melanoma Cell Line. Journal of Biological Chemistry, 2003, 278, 15291-15296.	1.6	46
134	Differentiation of Monocytic Cell Clones into CD8α+ Dendritic Cells (DC) Suggests that Monocytes Can Be Direct Precursors for Both CD8α+ and CD8αâ°' DC in the Mouse. Journal of Immunology, 2003, 170, 5927-5935.	0.4	20
135	CD24 is a genetic modifier for risk and progression of multiple sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 15041-15046.	3.3	102
136	Two-signal requirement for activation and effector function of natural killer cell response to allogeneic tumor cells. Blood, 2003, 102, 4456-4463.	0.6	19
137	Antigenic drift as a mechanism for tumor evasion of destruction by cytolytic T lymphocytes. Journal of Clinical Investigation, 2003, 111, 1487-1496.	3.9	87
138	Clonal Deletion of Simian Virus 40 Large T Antigen-Specific T Cells in the Transgenic Adenocarcinoma of Mouse Prostate Mice: An Important Role for Clonal Deletion in Shaping the Repertoire of T Cells Specific for Antigens Overexpressed in Solid Tumors. Journal of Immunology, 2002, 169, 4761-4769.	0.4	40
139	Cis elements for transporter associated with antigen-processing-2 transcription: two new promoters and an essential role of the IFN response factor binding element in IFN- \hat{l}^3 -mediated activation of the transcription initiator. International Immunology, 2002, 14, 189-200.	1.8	14
140	Perinatal Blockade of B7-1 and B7-2 Inhibits Clonal Deletion of Highly Pathogenic Autoreactive T Cells. Journal of Experimental Medicine, 2002, 195, 959-971.	4.2	59
141	B7-CTLA4 interaction promotes cognate destruction of tumor cells by cytotoxic T lymphocytes in vivo. Blood, 2002, 99, 2880-2889.	0.6	20
142	B7H Costimulates Clonal Expansion of, and Cognate Destruction of Tumor Cells by, CD8+ T Lymphocytes In Vivo. Journal of Experimental Medicine, 2001, 194, 1339-1348.	4.2	111
143	Local Costimulation Reinvigorates Tumor-Specific Cytolytic T Lymphocytes for Experimental Therapy in Mice with Large Tumor Burdens. Journal of Immunology, 2001, 167, 3936-3943.	0.4	40
144	The heat-stable antigen determines pathogenicity of self-reactive T cells in experimental autoimmune encephalomyelitis. Journal of Clinical Investigation, 2000, 105, 1227-1232.	3.9	64

PAN ZHENG

#	Article	IF	CITATIONS
145	Co-stimulatory molecules B7-1 and B7-2 as experimental therapeutic targets. Expert Opinion on Therapeutic Targets, 1999, 3, 93-108.	1.0	1
146	Proto-oncogene PML controls genes devoted to MHC class I antigen presentation. Nature, 1998, 396, 373-376.	13.7	149
147	CD28-independent Induction of T Helper Cells and Immunoglobulin Class Switches Requires Costimulation by the Heat-stable Antigen. Journal of Experimental Medicine, 1998, 187, 1151-1156.	4.2	67
148	Costimulation by B7 Modulates Specificity of Cytotoxic T Lymphocytes: A Missing Link That Explains Some Bystander T Cell Activation. Journal of Experimental Medicine, 1997, 186, 1787-1791.	4.2	14
149	CTLA-4–B7 Interaction Is Sufficient to Costimulate T Cell Clonal Expansion. Journal of Experimental Medicine, 1997, 185, 1327-1336.	4.2	103