Dafna Bar-Sagi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8424951/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature, 2013, 497, 633-637.	27.8	1,316
2	The structural basis of the activation of Ras by Sos. Nature, 1998, 394, 337-343.	27.8	692
3	Human Pancreatic Cancer Tumors Are Nutrient Poor and Tumor Cells Actively Scavenge Extracellular Protein. Cancer Research, 2015, 75, 544-553.	0.9	673
4	Oncogenic Kras-Induced GM-CSF Production Promotes the Development of Pancreatic Neoplasia. Cancer Cell, 2012, 21, 836-847.	16.8	589
5	EMT Subtype Influences Epithelial Plasticity and Mode of Cell Migration. Developmental Cell, 2018, 45, 681-695.e4.	7.0	497
6	Coupling of Ras and Rac Guanosine Triphosphatases Through the Ras Exchanger Sos. Science, 1998, 279, 560-563.	12.6	432
7	Structural Evidence for Feedback Activation by Ras·GTP of the Ras-Specific Nucleotide Exchange Factor SOS. Cell, 2003, 112, 685-695.	28.9	390
8	IL35-Producing B Cells Promote the Development of Pancreatic Neoplasia. Cancer Discovery, 2016, 6, 247-255.	9.4	283
9	Crosstalk between Regulatory T Cells and Tumor-Associated Dendritic Cells Negates Anti-tumor Immunity in Pancreatic Cancer. Cell Reports, 2017, 20, 558-571.	6.4	273
10	An orthosteric inhibitor of the Ras-Sos interaction. Nature Chemical Biology, 2011, 7, 585-587.	8.0	270
11	γδT Cells Support Pancreatic Oncogenesis by Restraining αβ T Cell Activation. Cell, 2016, 166, 1485-1499.e15.	28.9	266
12	Direct evidence for cancer-cell-autonomous extracellular protein catabolism in pancreatic tumors. Nature Medicine, 2017, 23, 235-241.	30.7	263
13	MyD88 inhibition amplifies dendritic cell capacity to promote pancreatic carcinogenesis via Th2 cells. Journal of Experimental Medicine, 2012, 209, 1671-1687.	8.5	254
14	Structural Analysis of Autoinhibition in the Ras Activator Son of Sevenless. Cell, 2004, 119, 393-405.	28.9	251
15	Crystal Structure of the Dbl and Pleckstrin Homology Domains from the Human Son of Sevenless Protein. Cell, 1998, 95, 259-268.	28.9	214
16	Tumor Cell–Derived IL1β Promotes Desmoplasia and Immune Suppression in Pancreatic Cancer. Cancer Research, 2020, 80, 1088-1101.	0.9	195
17	Determining the macropinocytic index of cells through a quantitative image-based assay. Nature Protocols, 2014, 9, 182-192.	12.0	168
18	Differential Activation of the Rac Pathway by Ha-Ras and K-Ras. Journal of Biological Chemistry, 2001, 276, 15609-15615.	3.4	148

DAFNA BAR-SAGI

#	Article	IF	CITATIONS
19	Sos-mediated cross-activation of wild-type Ras by oncogenic Ras is essential for tumorigenesis. Nature Communications, 2012, 3, 1168.	12.8	135
20	Mutant KRAS Enhances Tumor Cell Fitness by Upregulating Stress Granules. Cell, 2016, 167, 1803-1813.e12.	28.9	133
21	Macropinocytosis of Nab-paclitaxel Drives Macrophage Activation in Pancreatic Cancer. Cancer Immunology Research, 2017, 5, 182-190.	3.4	126
22	Wild-Type H- and N-Ras Promote Mutant K-Ras-Driven Tumorigenesis by Modulating the DNA Damage Response. Cancer Cell, 2014, 25, 243-256.	16.8	124
23	Plasma membrane V-ATPase controls oncogenic RAS-induced macropinocytosis. Nature, 2019, 576, 477-481.	27.8	113
24	Selective Alanine Transporter Utilization Creates a Targetable Metabolic Niche in Pancreatic Cancer. Cancer Discovery, 2020, 10, 1018-1037.	9.4	104
25	Regulation of Sos Activity by Intramolecular Interactions. Molecular and Cellular Biology, 1998, 18, 880-886.	2.3	90
26	E-Cadherin-Mediated Cell Coupling Is Required for Apoptotic Cell Extrusion. Current Biology, 2014, 24, 868-874.	3.9	83
27	Exercise-induced engagement of the IL-15/IL-15Rα axis promotes anti-tumor immunity in pancreatic cancer. Cancer Cell, 2022, 40, 720-737.e5.	16.8	67
28	Kras and Tumor Immunity: Friend or Foe?. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a031849.	6.2	62
29	The F-Box Domain-Dependent Activity of EMI1 Regulates PARPi Sensitivity in Triple-Negative Breast Cancers. Molecular Cell, 2019, 73, 224-237.e6.	9.7	58
30	BTK signaling drives CD1dhiCD5+ regulatory B-cell differentiation to promote pancreatic carcinogenesis. Oncogene, 2019, 38, 3316-3324.	5.9	55
31	A bright future for KRAS inhibitors. Nature Cancer, 2020, 1, 25-27.	13.2	52
32	One-way membrane trafficking of SOS in receptor-triggered Ras activation. Nature Structural and Molecular Biology, 2016, 23, 838-846.	8.2	49
33	Molecular Pathways: Targeting the Dependence of Mutant <i>RAS</i> Cancers on the DNA Damage Response. Clinical Cancer Research, 2015, 21, 1243-1247.	7.0	43
34	Gain-of-function p53R172H mutation drives accumulation of neutrophils in pancreatic tumors, promoting resistance to immunotherapy. Cell Reports, 2021, 36, 109578.	6.4	42
35	EMSY inhibits homologous recombination repair and the interferon response, promoting lung cancer immune evasion. Cell, 2022, 185, 169-183.e19.	28.9	38
36	Metabolic reprogramming of tumor-associated macrophages by collagen turnover promotes fibrosis in pancreatic cancer. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2119168119.	7.1	31

DAFNA BAR-SAGI

#	Article	IF	CITATIONS
37	Macropinocytosis as a Key Determinant of Peptidomimetic Uptake in Cancer Cells. Journal of the American Chemical Society, 2020, 142, 14461-14471.	13.7	30
38	The G protein–coupled receptor GPR31 promotes membrane association of KRAS. Journal of Cell Biology, 2017, 216, 2329-2338.	5.2	24
39	Exploiting cancer's drinking problem: regulation and therapeutic potential of macropinocytosis. Trends in Cancer, 2022, 8, 54-64.	7.4	23
40	ATDC is required for the initiation of KRAS-induced pancreatic tumorigenesis. Genes and Development, 2019, 33, 641-655.	5.9	20
41	Covalent Targeting of Ras G12C by Rationally Designed Peptidomimetics. ACS Chemical Biology, 2020, 15, 1604-1612.	3.4	20
42	Adaptive stimulation of macropinocytosis overcomes aspartate limitation in cancer cells under hypoxia. Nature Metabolism, 2022, 4, 724-738.	11.9	20
43	Integrated Systems Analysis of the Murine and Human Pancreatic Cancer Glycomes Reveals a Tumor-Promoting Role for ST6GAL1. Molecular and Cellular Proteomics, 2021, 20, 100160.	3.8	17
44	An Orthosteric Inhibitor of the RASâ \in SOS Interaction. The Enzymes, 2013, 34 Pt. B, 25-39.	1.7	15
45	Perturbation of cytoskeleton dynamics by the opposing effects of Rac1 and Rac1b. Small GTPases, 2010, 1, 89-97.	1.6	14
46	Pre-neoplastic pancreas cells enter a partially mesenchymal state following transient TGF-β exposure. Oncogene, 2018, 37, 4334-4342.	5.9	14
47	High-Content, Full Genome siRNA Screen for Regulators of Oncogenic <i>HRAS</i> -Driven Macropinocytosis. Assay and Drug Development Technologies, 2015, 13, 347-355.	1.2	12
48	A novel target for combination immunotherapy in pancreatic cancer: IL-1β mediates immunosuppression in the tumour microenvironment. British Journal of Cancer, 2021, 124, 1754-1756.	6.4	7
49	Histological Image Processing Features Induce a Quantitative Characterization of Chronic Tumor Hypoxia. PLoS ONE, 2016, 11, e0153623.	2.5	7
50	Simulating Heterogeneous Tumor Cell Populations. PLoS ONE, 2016, 11, e0168984.	2.5	4
51	Compartmentâ€dependent modulation of Ras ubiquitination. FASEB Journal, 2008, 22, 1053.1.	0.5	0
52	Regulation of HRas signaling by Rabexâ€5â€mediated ubiquitination. FASEB Journal, 2009, 23, 882.5.	0.5	0
53	Abstract B46: Stabilized helices targeting the RAS-SOS interaction as inhibitors of RAS-dependent cancer cell growth. , 2014, , .		0