Anastasios Stergiou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8424743/publications.pdf

Version: 2024-02-01

566801 580395 34 673 15 25 citations h-index g-index papers 36 36 36 1210 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Molecular Functionalization of Twoâ€Dimensional MoS ₂ Nanosheets. Chemistry - A European Journal, 2018, 24, 18246-18257.	1.7	7 3
2	Functionalized graphene and targeted applications $\hat{a} \in Highlighting$ the road from chemistry to applications. Progress in Materials Science, 2020, 114, 100683.	16.0	61
3	Oxone-Mediated Oxidative Cleavage of \hat{l}^2 -Keto Esters and 1,3-Diketones to \hat{l} ±-Keto Esters and 1,2-Diketones in Aqueous Medium. Journal of Organic Chemistry, 2013, 78, 7268-7273.	1.7	46
4	Stability Improvement and Performance Reproducibility Enhancement of Perovskite Solar Cells Following (FA/MA/Cs)PbI _{3–<i>x</i>} Br _{<i>x</i>} /(CH ₃) ₃ SPbI ₃ Dimensionality Engineering. ACS Applied Energy Materials, 2020, 3, 2465-2477.	u <mark>6</mark> ;5	44
5	Donor–acceptor graphene-based hybrid materials facilitating photo-induced electron-transfer reactions. Beilstein Journal of Nanotechnology, 2014, 5, 1580-1589.	1.5	42
6	Enhancing efficiency and decreasing photocatalytic degradation of perovskite solar cells using a hydrophobic copper-modified titania electron transport layer. Applied Catalysis B: Environmental, 2021, 284, 119714.	10.8	42
7	A Longâ€Lived Azafullerenyl Radical Stabilized by Supramolecular Shielding with a [10]Cycloparaphenylene. Angewandte Chemie - International Edition, 2019, 58, 17745-17750.	7.2	41
8	Fluorene–Perylene Diimide Arrays onto Graphene Sheets for Photocatalysis. ACS Applied Materials & Lamp; Interfaces, 2016, 8, 21576-21584.	4.0	34
9	Pingâ€Pong Energy Transfer in Covalently Linked Porphyrinâ€MoS ₂ Architectures. Angewandte Chemie - International Edition, 2020, 59, 3976-3981.	7.2	31
10	Axially Assembled Photosynthetic Antenna-Reaction Center Mimics Composed of Boron Dipyrromethenes, Aluminum Porphyrin, and Fullerene Derivatives. Inorganic Chemistry, 2017, 56, 10268-10280.	1.9	29
11	Mechanistic insights into the photocatalytic properties of metal nanocluster/graphene ensembles. Examining the role of visible light in the reduction of 4-nitrophenol. Nanoscale, 2017, 9, 9685-9692.	2.8	26
12	Conjugated Polymer Nanoparticle–Graphene Oxide Chargeâ€Transfer Complexes. Advanced Functional Materials, 2018, 28, 1707548.	7.8	26
13	Interfacing Carbon Dots for Charge†Transfer Processes. Small, 2021, 17, e2006005.	5.2	22
14	Boosting perovskite nanomorphology and charge transport properties <i>via</i> a functional D–π-A organic layer at the absorber/hole transporter interface. Nanoscale, 2020, 12, 15137-15149.	2.8	21
15	Individualized pâ€Doped Carbon Nanohorns. Angewandte Chemie - International Edition, 2016, 55, 10468-10472.	7.2	17
16	All-Carbon Nanosized Hybrid Materials: Fluorescent Carbon Dots Conjugated to Multiwalled Carbon Nanotubes. Journal of Physical Chemistry C, 2016, 120, 8550-8558.	1.5	15
17	An ion-selective crown ether covalently grafted onto chemically exfoliated MoS ₂ as a biological fluid sensor. Nanoscale, 2021, 13, 8948-8957.	2.8	14
18	Robust coherent spin centers from stable azafullerene radicals entrapped in cycloparaphenylene rings. Nanoscale, 2021, 13, 19946-19955.	2.8	13

#	Article	IF	CITATIONS
19	(Photo)electrocatalysis of molecular oxygen reduction by S-doped graphene decorated with a star-shaped oligothiophene. Nanoscale, 2019, 11, 7335-7346.	2.8	12
20	Oligothiophene/graphene supramolecular ensembles managing light induced processes: preparation, characterization, and femtosecond transient absorption studies leading to charge-separation. Nanoscale, 2015, 7, 15840-15851.	2.8	11
21	A Longâ€Lived Azafullerenyl Radical Stabilized by Supramolecular Shielding with a [10]Cycloparaphenylene. Angewandte Chemie, 2019, 131, 17909-17914.	1.6	11
22	Photoinduced charge separation in an oligophenylenevinylene-based Hamilton-type receptor supramolecularly associating two C ₆₀ -barbiturate guests. Physical Chemistry Chemical Physics, 2016, 18, 811-817.	1.3	8
23	Self-Assembled Core–Shell CdTe/Poly(3-hexylthiophene) Nanoensembles as Novel Donor–Acceptor Light-Harvesting Systems. ACS Applied Materials & Interfaces, 2017, 9, 44695-44703.	4.0	8
24	Pingpongâ€Energietransfer in kovalent verknýpften Porphyrinâ€MoS 2 â€Architekturen. Angewandte Chemie, 2020, 132, 4004-4009.	1.6	7
25	Methylammonium Lead Bromide Perovskite Nano-Crystals Grown in a Poly[styrene-co-(2-(dimethylamino)ethyl Methacrylate)] Matrix Immobilized on Exfoliated Graphene Nano-Sheets. Nanomaterials, 2022, 12, 1275.	1.9	4
26	Functionalized Carbon Nanohorns as Drug Delivery Platforms. Methods in Molecular Biology, 2021, 2207, 13-24.	0.4	3
27	One-step covalent hydrophobic/hydrophilic functionalization of chemically exfoliated molybdenum disulfide nanosheets with RAFT derived polymers. Chemical Communications, 2022, 58, 795-798.	2.2	3
28	Individualized pâ€Doped Carbon Nanohorns. Angewandte Chemie, 2016, 128, 10624-10628.	1.6	2
29	Tetherâ€Directed Regioselective Synthesis of an Equatorial face Bisadduct of Azafullerene Using Cyclo â€{2]â€octylmalonate. Chemistry - A European Journal, 2019, 25, 5751-5756.	1.7	2
30	Solution-phase molecular recognition of an azafullerene-quinoline dyad by a face-to-face porphyrin-dimer tweezer. RSC Advances, 2020, 10, 31720-31729.	1.7	1
31	First Synthesis of the Inherently Chiral <i>Trans</i> à€4′ Bisadduct of C ₅₉ N Azafullerene by Using <i>Cycloâ€</i> [2]â€dodecylmalonate as a Tether. Chemistry - A European Journal, 2021, 27, 13879-13886.	1.7	1
32	CHAPTER 2. Non-covalent Methodologies for the Preparation of Metal-free Nanocarbons for Catalysis. RSC Catalysis Series, 2018, , 29-66.	0.1	1
33	A solution-processed MoS ₂ /graphene heterostructure mediated by a bifunctional block copolymer as a non-noble metal platform for hydrogen evolution. Sustainable Energy and Fuels, 2022, 6, 2858-2867.	2.5	1
34	Graphene featuring imidazolium rings and electrostatically immobilized polyacrylate chains as metal-free electrocatalyst for selective oxygen reduction to hydrogen peroxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, , 129252.	2.3	O