
Ipek Yalcin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8424466/publications.pdf Version: 2024-02-01

IDER VALCIN

#	Article	IF	CITATIONS
1	The amygdala between sensation and affect: a role in pain. Journal of Molecular Psychiatry, 2013, 1, 9.	2.0	235
2	The Anterior Cingulate Cortex Is a Critical Hub for Pain-Induced Depression. Biological Psychiatry, 2015, 77, 236-245.	0.7	235
3	Antidepressants and gabapentinoids in neuropathic pain: Mechanistic insights. Neuroscience, 2016, 338, 183-206.	1.1	207
4	A Time-Dependent History of Mood Disorders in a Murine Model of Neuropathic Pain. Biological Psychiatry, 2011, 70, 946-953.	0.7	197
5	Emotional consequences of neuropathic pain: Insight from preclinical studies. Neuroscience and Biobehavioral Reviews, 2014, 47, 154-164.	2.9	158
6	Hyperactivity of Anterior Cingulate Cortex Areas 24a/24b Drives Chronic Pain-Induced Anxiodepressive-like Consequences. Journal of Neuroscience, 2018, 38, 3102-3115.	1.7	158
7	Effects of desipramine and tramadol in a chronic mild stress model in mice are altered by yohimbine but not by pindolol. European Journal of Pharmacology, 2005, 514, 165-174.	1.7	154
8	Mouse strain differences in the unpredictable chronic mild stress: a four-antidepressant survey. Behavioural Brain Research, 2008, 193, 140-143.	1.2	123
9	β ₂ â€adrenoceptors are critical for antidepressant treatment of neuropathic pain. Annals of Neurology, 2009, 65, 218-225.	2.8	103
10	Afferents to anterior cingulate areas 24a and 24b and midcingulate areas 24a′ and 24b′ in the mouse. Brain Structure and Function, 2017, 222, 1509-1532.	1.2	102
11	Differentiating Thermal Allodynia and Hyperalgesia Using Dynamic Hot and Cold Plate in Rodents. Journal of Pain, 2009, 10, 767-773.	0.7	95
12	The molecular neurobiology of chronic pain–induced depression. Cell and Tissue Research, 2019, 377, 21-43.	1.5	88
13	Delta-Opioid Receptors Are Critical for Tricyclic Antidepressant Treatment of Neuropathic Allodynia. Biological Psychiatry, 2008, 63, 633-636.	0.7	86
14	How to study anxiety and depression in rodent models of chronic pain?. European Journal of Neuroscience, 2021, 53, 236-270.	1.2	83
15	β2-adrenoceptors are essential for desipramine, venlafaxine or reboxetine action in neuropathic pain. Neurobiology of Disease, 2009, 33, 386-394.	2.1	75
16	The anxiodepressive comorbidity in chronic pain. Current Opinion in Anaesthesiology, 2014, 27, 520-527.	0.9	73
17	A Dual Noradrenergic Mechanism for the Relief of Neuropathic Allodynia by the Antidepressant Drugs Duloxetine and Amitriptyline. Journal of Neuroscience, 2018, 38, 9934-9954.	1.7	73
18	lsoflurane produces antidepressant effects and induces TrkB signaling in rodents. Scientific Reports, 2017, 7, 7811.	1.6	70

IPEK YALCIN

#	Article	IF	CITATIONS
19	Chronic, but not acute, tricyclic antidepressant treatment alleviates neuropathic allodynia after sciatic nerve cuffing in mice. European Journal of Pain, 2008, 12, 1008-1017.	1.4	68
20	Dual effects of nitric oxide in the mouse forced swimming test: possible contribution of nitric oxide-mediated serotonin release and potassium channel modulation. Pharmacology Biochemistry and Behavior, 2004, 77, 457-464.	1.3	67
21	Antidepressant-like effect of tramadol in the unpredictable chronic mild stress procedure: possible involvement of the noradrenergic system. Behavioural Pharmacology, 2007, 18, 623-631.	0.8	61
22	Antidepressants suppress neuropathic pain by a peripheral β2-adrenoceptor mediated anti-TNFα mechanism. Neurobiology of Disease, 2013, 60, 39-50.	2.1	60
23	Chronic treatment with agonists of \hat{l}^22 -adrenergic receptors in neuropathic pain. Experimental Neurology, 2010, 221, 115-121.	2.0	58
24	β ₂ â€Adrenoceptor agonists alleviate neuropathic allodynia in mice after chronic treatment. British Journal of Pharmacology, 2009, 158, 1683-1694.	2.7	57
25	The Sciatic Nerve Cuffing Model of Neuropathic Pain in Mice. Journal of Visualized Experiments, 2014, ,	0.2	53
26	Cingulate Overexpression of Mitogen-Activated Protein Kinase Phosphatase-1 as a Key Factor for Depression. Biological Psychiatry, 2017, 82, 370-379.	0.7	53
27	Efferents of anterior cingulate areas 24a and 24b and midcingulate areas 24aʹ and 24bʹ in the mouse. Brain Structure and Function, 2018, 223, 1747-1778.	1.2	51
28	Response of the Tail of the Ventral Tegmental Area to Aversive Stimuli. Neuropsychopharmacology, 2017, 42, 638-648.	2.8	44
29	Involvement of potassium channels and nitric oxide in tramadol antinociception. Pharmacology Biochemistry and Behavior, 2005, 80, 69-75.	1.3	38
30	Antidepressant drug action — From rapid changes on network function to network rewiring. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2016, 64, 285-292.	2.5	36
31	Ketamine induces rapid and sustained antidepressant-like effects in chronic pain induced depression: Role of MAPK signaling pathway. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2020, 100, 109898.	2.5	36
32	Cortical Excitability and Activation of TrkB Signaling During Rebound Slow Oscillations Are Critical for Rapid Antidepressant Responses. Molecular Neurobiology, 2019, 56, 4163-4174.	1.9	35
33	Rho-kinase inhibitor, Y-27632, has an antinociceptive effect in mice. European Journal of Pharmacology, 2006, 541, 49-52.	1.7	31
34	Effects of 5,7-dihydroxytryptamine lesion of the dorsal raphe nucleus on the antidepressant-like action of tramadol in the unpredictable chronic mild stress in mice. Psychopharmacology, 2008, 200, 497-507.	1.5	31
35	Muâ€opioid receptors are not necessary for nortriptyline treatment of neuropathic allodynia. European Journal of Pain, 2010, 14, 700-704.	1.4	29
36	Nociceptive thresholds are controlled through spinal β2-subunit-containing nicotinic acetylcholine receptors. Pain, 2011, 152, 2131-2137.	2.0	27

IPEK YALCIN

#	Article	IF	CITATIONS
37	The antiallodynic action of pregabalin in neuropathic pain is independent from the opioid system. Molecular Pain, 2016, 12, 174480691663347.	1.0	27
38	Implication of β3-adrenoceptors in the antidepressant-like effects of amibegron using Adrb3 knockout mice in the chronic mild stress. Behavioural Brain Research, 2010, 206, 310-312.	1.2	25
39	From Antidepressant Drugs to Beta-Mimetics: Preclinical Insights on Potential New Treatments for Neuropathic Pain. Recent Patents on CNS Drug Discovery, 2009, 4, 182-189.	0.9	20
40	BDNF parabrachio-amygdaloid pathway in morphine-induced analgesia. International Journal of Neuropsychopharmacology, 2013, 16, 1649-1660.	1.0	20
41	Is There a Place for β-Mimetics in Clinical Management of Neuropathic Pain? Salbutamol Therapy in Six Cases. Anesthesiology, 2010, 112, 1276-1279.	1.3	18
42	Loss of inhibitory tone on spinal cord dorsal horn spontaneously and nonspontaneously active neurons in a mouse model of neuropathic pain. Pain, 2016, 157, 1432-1442.	2.0	17
43	Cardiovascular effects of chronic treatment with a β2-adrenoceptor agonist relieving neuropathic pain in mice. Neuropharmacology, 2011, 61, 51-60.	2.0	15
44	Peripheral delta opioid receptors mediate duloxetine antiallodynic effect in a mouse model of neuropathic pain. European Journal of Neuroscience, 2018, 48, 2231-2246.	1.2	15
45	Activation of transient receptor potential vanilloid 2â€expressing primary afferents stimulates synaptic transmission in the deep dorsal horn of the rat spinal cord and elicits mechanical hyperalgesia. European Journal of Neuroscience, 2014, 40, 3189-3201.	1.2	14
46	Phenylpyridine-2-ylguanidines and rigid mimetics as novel inhibitors of TNFα overproduction: Beneficial action in models of neuropathic pain and of acute lung inflammation. European Journal of Medicinal Chemistry, 2018, 147, 163-182.	2.6	11
47	<scp>κâ€</scp> opioid receptors are not necessary for the antidepressant treatment of neuropathic pain. British Journal of Pharmacology, 2015, 172, 1034-1044.	2.7	10
48	A comparison of early and late treatments on allodynia and its chronification in experimental neuropathic pain. Molecular Pain, 2018, 14, 174480691774968.	1.0	10
49	Delta opioid receptors are essential to the antiallodynic action of Î' ₂ -mimetics in a model of neuropathic pain. Molecular Pain, 2020, 16, 174480692091293.	1.0	10
50	Plateletâ€rich plasma and cytokines in neuropathic pain: A narrative review and a clinical perspective. European Journal of Pain, 2022, 26, 43-60.	1.4	10
51	Enhanced analgesic cholinergic tone in the spinal cord in a mouse model of neuropathic pain. Neurobiology of Disease, 2021, 155, 105363.	2.1	9
52	Peripheral Delta Opioid Receptors Mediate Formoterol Anti-allodynic Effect in a Mouse Model of Neuropathic Pain. Frontiers in Molecular Neuroscience, 2019, 12, 324.	1.4	8
53	Long-lasting analgesic and neuroprotective action of the non-benzodiazepine anxiolytic etifoxine in a mouse model of neuropathic pain. Neuropharmacology, 2021, 182, 108407.	2.0	8
54	Time Course of Homeostatic Structural Plasticity in Response to Optogenetic Stimulation in Mouse Anterior Cingulate Cortex. Cerebral Cortex, 2022, 32, 1574-1592.	1.6	8

IPEK YALCIN

#	Article	IF	CITATIONS
55	Antidepressant treatment of neuropathic pain: looking for the mechanism. Future Neurology, 2010, 5, 247-257.	0.9	6
56	Comorbidity of chronic pain and anxiodepressive disorders: Deciphering underlying brain circuits. Neuroscience and Biobehavioral Reviews, 2020, 115, 131-133.	2.9	6
57	Depression and antidepressant action—from molecules to networks. Cell and Tissue Research, 2019, 377, 1-4.	1.5	4
58	Tests and Models to Study Pain in Animal-Based Translational Research. , 2016, , 375-388.		3
59	Antiallodynic action of phosphodiesterase inhibitors in a mouse model of peripheral nerve injury. Neuropharmacology, 2022, 205, 108909.	2.0	3
60	Douleur chroniqueÂ: comorbidité anxiodépressive et ségrégation corticale. Douleurs, 2015, 16, 226-237	. 0.0	0
61	Action of mefloquine/amitriptyline THN101 combination on neuropathic mechanical hypersensitivity in mice. Pain, 2021, Publish Ahead of Print, 2841-2853.	2.0	0
62	Depression in focus: Insights from animal and human data, from molecular to behavioural analyses. European Journal of Neuroscience, 2021, 53, 5-8.	1.2	0