
Leonardo Sepulveda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8424452/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Conventional and Emerging Extraction Processes of Flavonoids. Processes, 2020, 8, 434.	1.3	96
2	Valorization of pineapple waste for the extraction of bioactive compounds and glycosides using autohydrolysis. Innovative Food Science and Emerging Technologies, 2018, 47, 38-45.	2.7	53
3	Potential use of different agroindustrial by-products as supports for fungal ellagitannase production under solid-state fermentation. Food and Bioproducts Processing, 2014, 92, 376-382.	1.8	49
4	Fungal biodegradation of pomegranate ellagitannins. Journal of Basic Microbiology, 2014, 54, 28-34.	1.8	46
5	Fungal fucoidanase production by solid-state fermentation in a rotating drum bioreactor using algal biomass as substrate. Food and Bioproducts Processing, 2013, 91, 587-594.	1.8	43
6	Sorghum (<i>Sorghum bicolor</i> L.) as a potential source of bioactive substances and their biological properties. Critical Reviews in Food Science and Nutrition, 2022, 62, 2269-2280.	5.4	42
7	Ellagic acid production using polyphenols from orange peel waste by submerged fermentation. Electronic Journal of Biotechnology, 2020, 43, 1-7.	1.2	36
8	Optimization of ellagic acid accumulation by Aspergillus niger GH1 in solid state culture using pomegranate shell powder as a support. Process Biochemistry, 2012, 47, 2199-2203.	1.8	33
9	Ellagic Acid Recovery by Solid State Fermentation of Pomegranate Wastes by Aspergillus niger and Saccharomyces cerevisiae: A Comparison. Molecules, 2019, 24, 3689.	1.7	29
10	Solid state fermentation of pomegranate husk: Recovery of ellagic acid by SEC and identification of ellagitannins by HPLC/ESI/MS. Food Bioscience, 2018, 22, 99-104.	2.0	24
11	Optimization of Ellagitannase Production by <i>Aspergillus niger</i> GH1 by Solid-State Fermentation. Preparative Biochemistry and Biotechnology, 2015, 45, 617-631.	1.0	23
12	Emerging strategies for the development of food industries. Bioengineered, 2019, 10, 522-537.	1.4	20
13	Continuous production of ellagic acid in a packed-bed reactor. Process Biochemistry, 2014, 49, 1595-1600.	1.8	17
14	Effect of ultrasound on the extraction of ellagic acid and hydrolysis of ellagitannins from pomegranate husk. Environmental Technology and Innovation, 2021, 24, 102063.	3.0	16
15	Preliminary Testing of Ultrasound/Microwave-Assisted Extraction (U/M-AE) for the Isolation of Geraniin from Nephelium lappaceum L. (Mexican Variety) Peel. Processes, 2020, 8, 572.	1.3	12
16	Application of Lactic Acid Bacteria in Fermentation Processes to Obtain Tannases Using Agro-Industrial Wastes. Fermentation, 2021, 7, 48.	1.4	10
17	Effect of different polyphenol sources on the efficiency of ellagic acid release by Aspergillus niger. Revista Argentina De Microbiologia, 2016, 48, 71-77.	0.4	9
18	RECOVERY OF ELLAGIC ACID FROM MEXICAN RAMBUTAN PEEL BY SOLID-STATE FERMENTATION-ASSISTED EXTRACTION Food and Bioproducts Processing, 2022, , .	1.8	9

LEONARDO SEPULVEDA

#	ARTICLE	IF	CITATIONS
19	Solid-State Fermentation with Aspergillus niger GH1 to Enhance Polyphenolic Content and Antioxidative Activity of Castilla Rose (Purshia plicata). Plants, 2020, 9, 1518.	1.6	8
20	Tavern or Coyol Wine: A Beverage From Palm Sap With Biotechnological Potential. , 2020, , 233-252.		6
21	Influence of culture conditions on ellagitannase expression and fungal ellagitannin degradation. Bioresource Technology, 2021, 337, 125462.	4.8	5
22	Sotol, an Alcoholic Beverage With Rising Importance in the Worldwide Commerce. , 2019, , 141-160.		4
23	Ellagic acid production by solid-state fermentation influenced by the inert solid supports. Emirates Journal of Food and Agriculture, 0, , 750.	1.0	4
24	Significant Advances in Biopesticide Production: Strategies for High-Density Bio-Inoculant Cultivation. , 2020, , 1-11.		4
25	New Features and Properties of Microbial Cellulases Required for Bioconversion of Agro-industrial Wastes. , 2019, , 535-550.		3
26	A Green Technology for Control of Avocado Necrotic Fungi Using Bioactive Coatings. International Journal of Green Technology, 2018, 4, 24-28.	0.7	1
27	Tannin Degrading Enzymes: Catalytic Properties and Technological Perspectives. , 2018, , 125-141.		0
28	Physicochemical Properties and Extraction Methodologies of Agroindustrial Wastes to Produce Bioactive Compounds. , 2021, , 39-59.		0
29	Analysis of Physicochemical and Nutritional Properties of Rambutan (Nephelium Lappaceum L.) Fruit. , 2021, , 95-108.		0
30	Advances on Fermentation Processes for the Production of Bioactive Compounds in Food Biotechnology. , 2019, , 43-58.		0
31	Enzymatic Biotransformation of Pomegranate Ellagitannins: Initial Approach to Reaction Conditions. Iranian Journal of Biotechnology, 2020, 18, e2305.	0.3	0