List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8424345/publications.pdf

Version: 2024-02-01

20

#	Article	IF	CITATIONS
1	A Theoretical Survey of the UV–Visible Spectra of Axially and Peripherally Substituted Boron Subphthalocyanines. Computation, 2022, 10, 14.	1.0	3
2	Malonaldehyde-like Systems: BeF2 Clusters—A Subtle Balance between Hydrogen Bonds, Beryllium Bonds, and Resonance. Sci, 2022, 4, 7.	1.8	0
3	Spontaneous bond dissociation cascades induced by Be _n clusters (<i>n</i> = 2,4). Physical Chemistry Chemical Physics, 2021, 23, 6448-6454.	1.3	3
4	Perturbating Intramolecular Hydrogen Bonds through Substituent Effects or Non-Covalent Interactions. Molecules, 2021, 26, 3556.	1.7	6
5	Clustering of Electron Deficient B―and Beâ€Containing Analogues: In the Fight for Tetracoordination, Beryllium Takes the Lead. European Journal of Inorganic Chemistry, 2021, 2021, 4393-4401.	1.0	2
6	Significant bonding rearrangements triggered by Mg4 clusters. Journal of Chemical Physics, 2021, 154, 044302.	1.2	2
7	Enthalpies of Adduct Formation between Boron Trifluoride and Selected Organic Bases in Solution: Toward an Accurate Theoretical Entry to Lewis Basicity. Molecules, 2021, 26, 6659.	1.7	7
8	Some interesting features of the rich chemistry around electron-deficient systems. Pure and Applied Chemistry, 2020, 92, 773-787.	0.9	3
9	The Importance of Strain (Preorganization) in Beryllium Bonds. Molecules, 2020, 25, 5876.	1.7	2
10	Bonding between electron-deficient atoms: strong Lewis-acid character preserved in X–Y–X (X = B, Al;) Tj ET	Qq0 0 0 rg 1.4	gBT_/Overlock
11	Mutual Influence of Pnicogen Bonds and Beryllium Bonds: Energies and Structures in the Spotlight. Journal of Physical Chemistry A, 2020, 124, 5871-5878.	1.1	13
12	Are Anions of Cyclobutane Beryllium Derivatives Stabilized through Four-Center One-Electron Bonds?. Journal of Physical Chemistry A, 2020, 124, 1515-1521.	1.1	3
13	Weak Interactions Get Strong: Synergy between Tetrel and Alkaline-Earth Bonds. Journal of Physical Chemistry A, 2019, 123, 7124-7132.	1.1	24
14	Combined Experimental and Theoretical Survey of the Gas-Phase Reactions of Serine–Ca ²⁺ Adducts. Journal of Physical Chemistry A, 2019, 123, 6241-6250.	1.1	5
15	On the Lewis Basicity of Phosphoramides: A Critical Examination of Their Donor Number through Comparison of Enthalpies of Adduct Formation with SbCl 5 and BF 3. ChemPhysChem, 2019, 20, 2566-2576.	1.0	6
16	The beryllium bond. Advances in Inorganic Chemistry, 2019, 73, 73-121.	0.4	36

17	Modulating the intrinsic reactivity of molecules through non-covalent interactions. Physical Chemistry Chemical Physics, 2019, 21, 2222-2233.	1.3	13

18Ternary Complexes Stabilized by Chalcogen and Alkalineâ€Earth Bonds: Crucial Role of Cooperativity
and Secondary Noncovalent Interactions. Chemistry - A European Journal, 2019, 25, 11688-11695.1.7

#	Article	IF	CITATIONS
19	Gas-phase reactivity tuned through the interaction with alkaline-earth derivatives. Theoretical Chemistry Accounts, 2019, 138, 1.	0.5	5
20	Alkylation of uracil and thymine in the gas phase through interaction with alkylmercury compounds. International Journal of Mass Spectrometry, 2019, 436, 153-165.	0.7	5
21	Complexes between H ₂ and neutral oxyacid beryllium derivatives. The role of angular strain. Molecular Physics, 2019, 117, 1142-1150.	0.8	5
22	Be―and Mgâ€Based Electron and Anion Sponges. ChemPhysChem, 2018, 19, 1701-1706.	1.0	8
23	Trapping One Electron between Three Beryllium Atoms: Very Strong Oneâ€Electron Three enter Bonds. ChemPhysChem, 2018, 19, 1068-1074.	1.0	6
24	Alkaline-earth (Be, Mg and Ca) bonds at the origin of huge acidity enhancements. Physical Chemistry Chemical Physics, 2018, 20, 2413-2420.	1.3	32
25	Are beryllium-containing biphenyl derivatives efficient anion sponges?. Journal of Molecular Modeling, 2018, 24, 16.	0.8	7
26	Large Protonâ€Affinity Enhancements Triggered by Noncovalent Interactions. Chemistry - A European Journal, 2018, 24, 1971-1977.	1.7	15
27	Complexes between neutral oxyacid beryllium salts and dihydrogen: a possible way for hydrogen storage?. Dalton Transactions, 2018, 47, 12516-12520.	1.6	7
28	Intramolecular magnesium bonds in malonaldehyde-like systems: a critical view of the resonance-assisted phenomena. Theoretical Chemistry Accounts, 2018, 137, 1.	0.5	8
29	Publications of Manuel Yáñez and Otilia Mó. Journal of Physical Chemistry A, 2018, 122, 5681-5697.	1.1	1
30	Complexes between cyclopentene and cyclopentyne derivatives with HCu and FCu: The importance of cyclization effects. International Journal of Quantum Chemistry, 2018, 118, e25489.	1.0	1
31	Characterizing magnesium bonds: main features of a non-covalent interaction. Theoretical Chemistry Accounts, 2017, 136, 1.	0.5	21
32	Oneâ€Electron Bonds in Frustrated Lewis Pair TPB Ligands: Boron Behaving as a Lewis Base. Angewandte Chemie, 2017, 129, 6892-6896.	1.6	8
33	Oneâ€Electron Bonds in Frustrated Lewis Pair TPB Ligands: Boron Behaving as a Lewis Base. Angewandte Chemie - International Edition, 2017, 56, 6788-6792.	7.2	11
34	Formation of unexpected silicon- and disiloxane-bridged multiferrocenyl derivatives bearing Si–O–CHH ₂ and Si–(CH ₂) ₂ C(CH ₃) ₃ substituents <i>via</i> cleavage of tetrahydrofuran and trapping of its ring fragments. Dalton Transactions, 2017, 46, 11584-11597.	1.6	5
35	Beryllium-based fluorenes as efficient anion sponges. Physical Chemistry Chemical Physics, 2017, 19, 23052-23059.	1.3	10
36	Exergonic and Spontaneous Production of Radicals through Beryllium Bonds. Angewandte Chemie - International Edition, 2016, 55, 8736-8739.	7.2	22

#	Article	IF	CITATIONS
37	On the existence of intramolecular one-electron Be–Be bonds. Chemical Communications, 2016, 52, 9656-9659.	2.2	28
38	Gasâ€Phase Infrared Spectroscopy of Substituted Cyanobutadiynes: Roles of the Bromine Atom and Methyl Group as Substituents. ChemPhysChem, 2016, 17, 1018-1024.	1.0	8
39	Exergonic and Spontaneous Production of Radicals through Beryllium Bonds. Angewandte Chemie, 2016, 128, 8878-8881.	1.6	9
40	Multi-Ferrocene-Containing Silanols as Redox-Active Anion Receptors. Organometallics, 2016, 35, 3507-3519.	1.1	12
41	Boronâ€Boron Oneâ€Electron Sigma Bonds versus Bâ€Xâ€B Bridged Structures. Chemistry - A European Journal, 2016, 22, 13697-13704.	1.7	13
42	Beryllium subphthalocyanines self-assembling properties. Canadian Journal of Chemistry, 2016, 94, 1015-1021.	0.6	3
43	Berylliumâ€Based Anion Sponges: Close Relatives of Proton Sponges. Chemistry - A European Journal, 2016, 22, 18322-18325.	1.7	24
44	Effect of beryllium bonds on the keto–enol tautomerism of formamide derivatives: a subtle basicity–acidity balance. Theoretical Chemistry Accounts, 2016, 135, 1.	0.5	5
45	Fullerene and corannulene derivatives acting as insulators of Cl ^{â^'} and BeH ₂ . Physical Chemistry Chemical Physics, 2016, 18, 6059-6068.	1.3	5
46	Photochemical Behavior of Beryllium Complexes with Subporphyrazines and Subphthalocyanines. Journal of Physical Chemistry A, 2016, 120, 4845-4852.	1.1	12
47	Aluminum Monocation Basicity and Affinity Scales. European Journal of Mass Spectrometry, 2015, 21, 517-532.	0.5	8
48	Simultaneous Aromatic–Beryllium Bonds and Aromatic–Anion Interactions: Naphthalene and Pyrene as Models of Fullerenes, Carbon Singleâ€Walled Nanotubes, and Graphene. ChemPhysChem, 2015, 16, 2680-2686.	1.0	8
49	Ga ⁺ Basicity and Affinity Scales Based on Highâ€Level Abâ€Initio Calculations. ChemPhysChem, 2015, 16, 3206-3213.	1.0	0
50	Creating Ïfâ€Holes through the Formation of Beryllium Bonds. Chemistry - A European Journal, 2015, 21, 12676-12682.	1.7	38
51	Why Is the Spontaneous Deprotonation of [Cu(uracil) ₂] ²⁺ Complexes Accompanied by Enolization of the System?. ChemPhysChem, 2015, 16, 2375-2382.	1.0	2
52	Effects of the ionization in the tautomerism of uracil: A reaction electronic flux perspective. Journal of Computational Chemistry, 2015, 36, 2135-2145.	1.5	6
53	Interplay between Beryllium Bonds and Anion-Ï€ Interactions in BeR2:C6X6:Yâ^' Complexes (R = H, F and Cl,) Tj E	TQ ₉ 1 1 0. 1.7	.784314 rg8 11
54	Ferrocene and Silicon-Containing Oxathiacrown Macrocycles and Linear Oligo-Oxathioethers Obtained via Thiol–Ene Chemistry of a Redox-Active Bifunctional Vinyldisiloxane. Macromolecules, 2015, 48, 6955-6969.	2.2	14

#	Article	IF	CITATIONS
55	Using beryllium bonds to change halogen bonds from traditional to chlorine-shared to ion-pair bonds. Physical Chemistry Chemical Physics, 2015, 17, 2259-2267.	1.3	49
56	Intervalence charge transfer across noncovalent interactions on vinyl silyl bridged biferrocenyl compounds. Computational and Theoretical Chemistry, 2015, 1053, 281-288.	1.1	5
57	Acidity enhancement of unsaturated bases of group 15 by association with borane and beryllium dihydride. Unexpected boron and beryllium BrA,nsted acids. Dalton Transactions, 2015, 44, 1193-1202.	1.6	17
58	Can Transition Metals and Group II Mono- and Dications Discriminate between Homo- and Heterochiral XYYX' Dimers (X,X'=H,Me; Y=O,S,Se)?. Croatica Chemica Acta, 2014, 87, 481-493.	0.1	1
59	Some Interesting Features of Non-Covalent Interactions. Croatica Chemica Acta, 2014, 87, 291-306.	0.1	14
60	New insights into the gas-phase unimolecular fragmentations of [Cysteine–Ca]2+ complexes. Computational and Theoretical Chemistry, 2014, 1047, 38-46.	1.1	2
61	On the Structures, Lifetimes, and Infrared Spectra of Alkylmercury Hydrides. ChemPhysChem, 2014, 15, 530-541.	1.0	3
62	Spontaneous H ₂ Loss through the Interaction of Squaric Acid Derivatives and BeH ₂ . Chemistry - A European Journal, 2014, 20, 5309-5316.	1.7	19
63	Changing Weak Halogen Bonds into Strong Ones through Cooperativity with Beryllium Bonds. Journal of Physical Chemistry A, 2014, 118, 4205-4213.	1.1	54
64	Cooperativity in beryllium bonds. Physical Chemistry Chemical Physics, 2014, 16, 4305-4312.	1.3	37
65	Spontaneous proton transfers induced by beryllium bonds. Molecular Physics, 2014, 112, 592-600.	0.8	30
66	On the existence and characteristics of π-beryllium bonds. Physical Chemistry Chemical Physics, 2014, 16, 17531-17536.	1.3	34
67	Behavior of Carboxylic Acids upon Complexation with Beryllium Compounds. Journal of Physical Chemistry A, 2014, 118, 5720-5726.	1.1	9
68	Are Boryl Radicals from Amine–Boranes and Phosphine–Boranes the Most Stable Radicals?. ChemPhysChem, 2014, 15, 2288-2294.	1.0	4
69	On the stability of [Pb(Proline)]2+ complexes. Reconciling theory with experiment. Chemical Physics Letters, 2014, 598, 91-95.	1.2	6
70	Complexation of Ca2+ with selenocysteine and effects on its intrinsic acidity. Arkivoc, 2014, 2014, 2014, 207-223.	0.3	0
71	MS-CASPT2 study of the low-lying electronic excited states of di-thiosubstituted formic acid dimers. Theoretical Chemistry Accounts, 2013, 132, 1.	0.5	1
72	Alkyl mercury compounds: an assessment of DFT methods. Theoretical Chemistry Accounts, 2013, 132, 1.	0.5	19

#	Article	IF	CITATIONS
73	Can Conventional Bases and Unsaturated Hydrocarbons Be Converted into Gasâ€Phase Superacids That Are Stronger than Most of the Known Oxyacids? The Role of Beryllium Bonds. Chemistry - A European Journal, 2013, 19, 11637-11643.	1.7	55
74	Mechanochemical and silica gel-mediated formation of highly electron-poor 1-cyanocarbonylferrocene. Chemical Communications, 2013, 49, 9785.	2.2	15
75	Enhancing and modulating the intrinsic acidity of imidazole and pyrazole through beryllium bonds. Journal of Molecular Modeling, 2013, 19, 4139-4145.	0.8	34
76	Modulating weak intramolecular interactions through the formation of beryllium bonds: complexes between squaric acid and BeH2. Journal of Molecular Modeling, 2013, 19, 2759-2766.	0.8	24
77	Unimolecular Reactivity of the [Urea-Sr]2+ Complex, a Metastable Dication in the Gas Phase: An Experimental and Theoretical Perspective. Journal of Physical Chemistry B, 2013, 117, 2088-2095.	1.2	6
78	Spontaneous ion-pair formation in the gas phase induced by Beryllium bonds. Chemical Physics Letters, 2013, 590, 22-26.	1.2	30
79	Revealing Unexpected Mechanisms for Nucleophilic Attack on Sĩ£¿S and SeSe Bridges. Chemistry - A European Journal, 2013, 19, 3629-3638.	1.7	14
80	On the stability of [(uracil)2-Cu]2+ complexes in the gas phase. Different pathways for the formation of [(uracil-H)(uracil)-Cu]+ monocations. Organic and Biomolecular Chemistry, 2013, 11, 3862.	1.5	14
81	Resonance assisted hydrogen bonds in open-chain and cyclic structures of malonaldehyde enol: A theoretical study. Journal of Molecular Structure, 2013, 1048, 138-151.	1.8	28
82	Conformational preferences of RCH2CH2CN (RÂ=ÂCH3, F, Cl) cyanides and their corresponding isocyanides. Structural Chemistry, 2013, 24, 1789-1798.	1.0	3
83	Dramatic substituent effects on the mechanisms of nucleophilic attack on Se-S bridges. Journal of Computational Chemistry, 2013, 34, 2537-2547.	1.5	6
84	Modeling Interactions between an Amino Acid and a Metal Dication: Cysteine–Calcium(II) Reactions in the Gas Phase. ChemPlusChem, 2013, 78, 1124-1133.	1.3	13
85	UV/Vis Spectra of Subporphyrazines and Subphthalocyanines with Aluminum and Gallium: A Timeâ€Dependent DFT Study. ChemPhysChem, 2013, 14, 915-922.	1.0	10
86	Infrared Spectra of Cyanoacetaldehyde (NCCH 2 CHO): A Potential Prebiotic Compound of Astrochemical Interest. ChemPhysChem, 2013, 14, 2764-2771.	1.0	7
87	Modelling peptide–metal dication interactions: formamide–Ca2+ reactions in the gas phase. Organic and Biomolecular Chemistry, 2012, 10, 7552.	1.5	16
88	Strong interactions between copper halides and unsaturated systems: new metallocycles? Or the importance of deformation. Physical Chemistry Chemical Physics, 2012, 14, 11468.	1.3	22
89	Cooperativity between hydrogen bonds and beryllium bonds in (H2O)nBeX2 (n = 1–3, X = H, F) complexes. A new perspective. Physical Chemistry Chemical Physics, 2012, 14, 14540.	1.3	67
90	Unexpected Acidity Enhancement Triggered by AlH ₃ Association to Phosphines. Journal of Physical Chemistry A, 2012, 116, 6950-6954.	1.1	12

#	Article	IF	CITATIONS
91	Microsolvation of morpholine, a bidentate base – the importance of cooperativity. Journal of Physical Organic Chemistry, 2012, 25, 1380-1390.	0.9	5
92	The importance of deformation on the strength of beryllium bonds. Computational and Theoretical Chemistry, 2012, 998, 74-79.	1.1	33
93	Modulating the Strength of Hydrogen Bonds through Beryllium Bonds. Journal of Chemical Theory and Computation, 2012, 8, 2293-2300.	2.3	81
94	Infrared spectra of chargeâ€solvated versus saltâ€bridge conformations of glycineâ€; serineâ€; and cysteineâ€Ca ²⁺ complexes. International Journal of Quantum Chemistry, 2012, 112, 2126-2134.	1.0	9
95	On the Origin of the Enhanced Acidity of Chalcocyclopentadienes (Cyclopentadiene Chalcogenols) in the Gas Phase. ChemPhysChem, 2012, 13, 1167-1172.	1.0	3
96	Stability trends and tautomerization of chalcocyclopentadienes. The role of aromaticity. New Journal of Chemistry, 2011, 35, 2713.	1.4	4
97	TDDFT study of the UV-vis spectra of subporphyrazines and subphthalocyanines. Journal of Porphyrins and Phthalocyanines, 2011, 15, 1220-1230.	0.4	24
98	Modeling the interactions between peptide functions and Sr2+: formamide–Sr2+ reactions in the gas phase. Physical Chemistry Chemical Physics, 2011, 13, 18409.	1.3	21
99	Effect of Sr ²⁺ association on the tautomerization processes of uracil and its dithio- and diseleno-derivatives. Organic and Biomolecular Chemistry, 2011, 9, 423-431.	1.5	9
100	La quÃmica computacional en la nueva frontera. Arbor, 2011, 187, 143-155.	0.1	0
101	Unimolecular reactivity upon collision of uracil–Ca2+ complexes in the gas phase: Comparison with uracil–M+ (M=H, alkali metals) and uracil–M2+ (M=Cu, Pb) systems. International Journal of Mass Spectrometry, 2011, 306, 27-36.	0.7	37
102	Assisted intramolecular proton transfer in (uracil)2Ca2+ complexes. Theoretical Chemistry Accounts, 2011, 128, 457-464.	0.5	15
103	Unexpected Gas-Phase Ion Chemistry Results Unraveled by Computational Chemistry. Current Organic Chemistry, 2010, 14, 1600-1611.	0.9	6
104	New Insights into Factors Influencing Bï£įN Bonding in X:BH _{3â^`<i>n</i>} F _{<i>n</i>} and X:BH _{3â^`<i>n</i>} Cl _{<i>n</i>} for X=N ₂ , HCN, LiCN, H ₂ CNH, NF ₃ , NH ₃ and <i>n</i> =0–3: The Importance of Deformation. Chemistry - A European Journal, 2010, 16, 11897-11905.	1.7	39
105	Homoselenocysteine — An oxygen or selenium acid in the gas phase?. Canadian Journal of Chemistry, 2010, 88, 744-753.	0.6	2
106	The role of hyperconjugative π-aromaticity in the enhanced acidity of methyl-, silyl and germylcyclopentadienes. Molecular Physics, 2010, 108, 2467-2476.	0.8	7
107	Serine–Ca ²⁺ versus serine–Cu ²⁺ complexes — AÂtheoretical perspective. Canadian Journal of Chemistry, 2010, 88, 759-768.	0.6	11
108	Structural and Electronic Effects on One-Bond Spinâ^'Spin Coupling Constants1J(Bâ^'N),1J(Bâ^'H), and1J(Bâ^'F) for Complexes of Nitrogen Bases with BH3and Its Fluoro-Substituted Derivatives. Journal of Physical Chemistry A, 2010, 114, 12775-12779.	1.1	8

#	Article	IF	CITATIONS
109	Hydrogen bonding in electronically excited states: a comparison between formic acid dimer and its mono-substituted thioderivatives. Physical Chemistry Chemical Physics, 2010, 12, 13037.	1.3	8
110	Are cyclopentadienylberyllium, magnesium and calcium hydrides carbon or metal acids in the gas phase?. Dalton Transactions, 2010, 39, 4593.	1.6	11
111	Infrared Spectra of a Species of Potential Prebiotic and Astrochemical Interest: Cyanoethenethiol (NCâ°'CHâ•€Hâ°'SH). Journal of Physical Chemistry A, 2010, 114, 9583-9588.	1.1	8
112	The mechanism of double proton transfer in dimers of uracil and 2â€thiouracil—The reaction force perspective. Journal of Computational Chemistry, 2009, 30, 389-398.	1.5	26
113	A theoretical study of diborenes HLB=BLH for L=CO, NH3, OH2, PH3, SH2, ClH: structures, energies, and spin–spin coupling constants. Theoretical Chemistry Accounts, 2009, 124, 187-195.	0.5	10
114	Beryllium Bonds, Do They Exist?. Journal of Chemical Theory and Computation, 2009, 5, 2763-2771.	2.3	158
115	The effects of C by N replacement on the hydrogen bonding of malonaldehyde: N-formylformimidic acid, N-(hydroxymethyl)formamide and related compounds. Physical Chemistry Chemical Physics, 2009, 11, 762-769.	1.3	15
116	Combined Experimental and Theoretical Study on Hydrogen-Bonded Complexes between Cyclic Ketones, Lactones, and Lactams with 3,4-Dinitrophenol. Journal of Physical Chemistry A, 2009, 113, 14711-14717.	1.1	10
117	Ni ⁺ reactions with aminoacetonitrile, a potential prebiological precursor of glycine. Journal of Mass Spectrometry, 2008, 43, 317-326.	0.7	9
118	Strong Dissimilarities Between the Gasâ€Phase Acidities of Saturated and α,βâ€Unsaturated Boranes and the Corresponding Alanes and Gallanes. Chemistry - A European Journal, 2008, 14, 2201-2208.	1.7	12
119	Bonding in Tropolone, 2â€Aminotropone, and Aminotroponimine: No Evidence of Resonanceâ€Assisted Hydrogenâ€Bond Effects. Chemistry - A European Journal, 2008, 14, 4225-4232.	1.7	80
120	α,βâ€Unsaturated and Saturated Derivatives of Be, Mg, and Ca: Are They Carbon or Metal Acids in the Gas Phase?. Chemistry - A European Journal, 2008, 14, 10423-10429.	1.7	8
121	Why Are Selenouracils as Basic as but Stronger Acids than Uracil in the Gas Phase?. ChemPhysChem, 2008, 9, 1715-1720.	1.0	5
122	Computational study on the kinetics of the reaction between Ca2+ and urea. Chemical Physics Letters, 2008, 456, 156-161.	1.2	14
123	Conformational analysis, NMR properties and nitrogen inversion of N-substituted 1,3-oxazines. New Journal of Chemistry, 2008, 32, 2209.	1.4	6
124	The importance of the oxidative character of doubly charged metal cations in binding neutral bases. [Urea-M]2+ and [thiourea-M]2+ (M = Mg, Ca, Cu) complexes. Physical Chemistry Chemical Physics, 2008, 10, 3229.	1.3	39
125	Structures, Bonding, and One-Bond Bâ^'N and Bâ^'H Spinâ^'Spin Coupling Constants for a Series of Neutral and Anionic Five-Membered Rings Containing BN Bonds. Journal of Chemical Theory and Computation, 2008, 4, 1869-1876.	2.3	5
126	Selenoureaâ^'Ca ²⁺ Reactions in Gas Phase. Similarities and Dissimilarities with Urea and Thiourea. Journal of Physical Chemistry B, 2008, 112, 5479-5486.	1.2	26

#	Article	IF	CITATIONS
127	On the Bonding of Selenocyanates and Isoselenocyanates and Their Protonated Derivatives. Journal of Chemical Theory and Computation, 2008, 4, 1593-1599.	2.3	8
128	Gas-Phase Interaction of Calcium (Ca ²⁺) with Seleno Derivatives of Uracil. Journal of Chemical Theory and Computation, 2008, 4, 1002-1011.	2.3	14
129	Interaction of Ca2+ with uracil and its thio derivatives in the gas phase. Organic and Biomolecular Chemistry, 2008, 6, 3695.	1.5	40
130	Accelerating charge transfer in a triphenylamine–subphthalocyanine donor–acceptor system. Chemical Communications, 2008, , 1759.	2.2	68
131	Ni ⁺ Reactions with Aminoacrylonitrile, A Species of Potential Astrochemical Relevance. Journal of Physical Chemistry A, 2008, 112, 10509-10515.	1.1	6
132	Resonance-Assisted Hydrogen Bonds:Â A Critical Examination. Structure and Stability of the Enols of β-Diketones and β-Enaminones. Journal of Physical Chemistry A, 2007, 111, 3585-3591.	1.1	142
133	A theoretical study of hydration effects on the prototropic tautomerism of selenouracils. Organic and Biomolecular Chemistry, 2007, 5, 3092.	1.5	22
134	Effect of Ni(ii), Cu(ii) and Zn(ii) association on the keto-enol tautomerism of thymine in the gas phase. Physical Chemistry Chemical Physics, 2007, 9, 2531-2537.	1.3	30
135	Spinâ^'Spin Coupling Constants for Iminoboranes RBNH, HBNR, and RBNR and Comparisons with Corresponding Isoelectronic Acetylenes RCCH and RCCR, for R = H, CH3, NH2, OH, and F. Journal of Chemical Theory and Computation, 2007, 3, 549-556.	2.3	8
136	Attacking Boron Nucleophiles:  NMR Properties of Five-Membered Diazaborole Rings. Journal of Physical Chemistry A, 2007, 111, 419-421.	1.1	14
137	Unusual substituent effects on the bonding of iminoboranes. Physical Chemistry Chemical Physics, 2007, 9, 3970-3977.	1.3	31
138	Activation of the Disulfide Bond and Chalcogen–Chalcogen Interactions: An Experimental (FTICR) and Computational Study. Chemistry - A European Journal, 2007, 13, 1796-1803.	1.7	25
139	How Can a Carbon Atom Be Covalently Bound to Five Ligands? The Case of Si2(CH3)7+. Angewandte Chemie - International Edition, 2007, 46, 381-385.	7.2	24
140	Unimolecular Reactivity of Uracil–Cu2+ Complexes in the Gas Phase. ChemPhysChem, 2007, 8, 181-187.	1.0	64
141	Gas-Phase Reactions Between Thiourea and Ca2+: New Evidence for the Formation of [Ca(NH3)]2+ and Other Doubly Charged Species. ChemPhysChem, 2007, 8, 1330-1337.	1.0	25
142	Nonâ€Resonanceâ€Assisted Hydrogen Bonding in Hydroxymethylene and Aminomethylene Cyclobutanones and Cyclobutenones and Their Nitrogen Counterparts ChemPhysChem, 2007, 8, 1950-1958.	1.0	82
143	Thermochemistry, bonding, and reactivity of Ni + and Ni 2+ in the gas phase. Mass Spectrometry Reviews, 2007, 26, 474-516.	2.8	36
144	Cyano substituent effects on enol and enethiol acidity and basicity: The protonation and deprotonation of 3-hydroxy-2-propenenitrile and its thio analogue. International Journal of Mass Spectrometry, 2007, 267, 125-133.	0.7	18

#	Article	IF	CITATIONS
145	Substituent Effects on Enthalpies of Formation of Nitrogen Heterocycles:  2-Substituted Benzimidazoles and Related Compounds. Journal of Physical Chemistry A, 2006, 110, 2535-2544.	1.1	17
146	Gas-Phase Deprotonation of Uracilâ^'Cu2+ and Thiouracilâ^'Cu2+ Complexes. Journal of Physical Chemistry A, 2006, 110, 1943-1950.	1.1	69
147	An ab Initio Study of15Nâ~'11B Spinâ~'Spin Coupling Constants for Borazine and Selected Derivatives. Journal of Physical Chemistry A, 2006, 110, 9959-9966.	1.1	49
148	Reactions of F+(3P) and F+(1D) with Silicon Oxide. Possibility of Spin-Forbidden Processes. Journal of Physical Chemistry A, 2006, 110, 7130-7137.	1.1	0
149	Analysis of the bonding in XH3Cu+ (XB, Al, Ga) complexes. International Journal of Quantum Chemistry, 2006, 106, 659-663.	1.0	4
150	On the stability of non-conventional ï€-complexes between Ni+ and toluene, phenyl-silane and phenyl-germane. Journal of Physical Organic Chemistry, 2006, 19, 495-502.	0.9	3
151	Cu+ association to some Ph–X (X=OH, NH2, CHO, COOH, CF3) phenyl derivatives International Journal of Mass Spectrometry, 2006, 255-256, 20-27.	0.7	27
152	Complexes between Lithium Cation and Diphenylalkanes in the Gas Phase: The Pincer Effect. Chemistry - A European Journal, 2006, 12, 7676-7683.	1.7	32
153	An Experimental and Theoretical Investigation of Gas-Phase Reactions of Ca2+ with Glycine. Chemistry - A European Journal, 2006, 12, 6787-6796.	1.7	57
154	Gas-Phase Protonation and Deprotonation of Acrylonitrile Derivatives NCCHCHX (X=CH3, NH2,) Tj	ETQq0 0	0 rgBT /Overlo 17
155	Thermochemical properties of two benzimidazole derivatives: 2-Phenyl- and 2-benzylbenzimidazole. Journal of Chemical Thermodynamics, 2005, 37, 1168-1176.	1.0	18
156	The NICS (Nucleus-Independent Chemical Shift) as a probe of the relative stability of β-chalcogenovinylaldehydes stabilized through intramolecular chalcogen–chalcogen interactions. Computational and Theoretical Chemistry, 2005, 730, 217-220.	1.5	2
157	Are resonance-assisted hydrogen bonds â€ [~] resonance assisted'? A theoretical NMR study. Chemical Physics Letters, 2005, 411, 411-415.	1.2	106
158	Cooperativity and Proton Transfer in Hydrogen-Bonded Triads. ChemPhysChem, 2005, 6, 1411-1418.	1.0	50
159	Aromaticity Analysis of Lithium Cation/ π Complexes of Aromatic Systems. ChemPhysChem, 2005, 6, 2552-2561.	1.0	46
160	Why Does Pivalaldehyde (Trimethylacetaldehyde) Unexpectedly Seem More Basic Than 1-Adamantanecarbaldehyde in the Gas Phase? FT-ICR and High-Level Ab Initio Studies. Chemistry - A European Journal, 2005, 11, 1826-1832.	1.7	13
161	Acidity Trends in α,β-Unsaturated Sulfur, Selenium, and Tellurium Derivatives: Comparison with C-, Si-, Ge-, Sn-, N-, P-, As-, and Sb-Containing Analogues. Chemistry - A European Journal, 2005, 11, 2145-2153.	1.7	28
162	The Role of Intramolecular Hydrogen Bonds vs. Other Weak Interactions on the Conformation of Hyponitrous Acid and Its Mono- and Dithio-Derivatives. Structural Chemistry, 2005, 16, 295-303.	1.0	7

#	Article	IF	CITATIONS
163	Chiral recognition in phosphinic acid dimers. Journal of Physical Organic Chemistry, 2005, 18, 491-497.	0.9	14
164	Density Functional Theory Study of the Hydrogen Bond Interaction between Lactones, Lactams, and Methanol. Journal of Physical Chemistry A, 2005, 109, 9141-9148.	1.1	18
165	Periodic Trends in Bond Dissociation Energies. A Theoretical Study. Journal of Physical Chemistry A, 2005, 109, 4359-4365.	1.1	67
166	Protonation Thermochemistry of Selected Hydroxy- and Methoxycarbonyl Molecules. Journal of Physical Chemistry A, 2005, 109, 11851-11859.	1.1	9
167	Hydrogen Bond vs Proton Transfer in HZSM5 Zeolite. A Theoretical Study. Journal of Physical Chemistry B, 2005, 109, 19301-19308.	1.2	22
168	Infrared Spectra of a Species of Astrochemical Interest:Â Aminoacrylonitrile (3-Amino-2-propenenitrile). Journal of Physical Chemistry A, 2005, 109, 4705-4712.	1.1	22
169	Why Are the Ca2+ and K+ Binding Energies of Formaldehyde and Ammonia Reversed with Respect to Their Proton Affinities?. Journal of Physical Chemistry A, 2005, 109, 6735-6742.	1.1	16
170	Ab Initio Study of the Influence of Trimer Formation on One- and Two-Bond Spinâ^'Spin Coupling Constants Across an Xâ^'Hâ^'Y Hydrogen Bond:Â AH:XH:YH3Complexes for A, X =19F,35Cl and Y =15N,31P. Journal of Physical Chemistry A, 2005, 109, 2350-2355.	1.1	10
171	On the existence and lifetimes of Cu2+ complexes with water, ammonia, and hydrogen cyanide. Journal of Chemical Physics, 2005, 123, 014315.	1.2	14
172	A theoretical study on the dimers of aminoacrylonitrile (3-amino-2-propenenitrile), a compound of astrochemical interest. Arkivoc, 2005, 2005, 239-252.	0.3	2
173	19F–19F spin–spin coupling constant surfaces for (HF)2 clusters: The orientation and distance dependence of the sign and magnitude of JF–F. Journal of Chemical Physics, 2004, 120, 3237-3243.	1.2	31
174	Substituent and ring effects on enthalpies of formation: 2-methyl- and 2-ethylbenzimidazoles versus benzene- and imidazole-derivatives. Molecular Physics, 2004, 102, 711-721.	0.8	16
175	Stable Doubly Charged Positive Molecular Ions Formed by Direct Attachment of Alpha Particles to HCN and HNC. Physical Review Letters, 2004, 92, 133001.	2.9	9
176	Optimization of extended basis sets and assessment of different theoretical schemes for Pb containing compounds. Chemical Physics Letters, 2004, 383, 561-565.	1.2	14
177	The importance of nonconventional structures in the binding of Ni+ to ethynylsilanes and ethynylgermanes. Theoretical Chemistry Accounts, 2004, 112, 298.	0.5	10
178	Association of Cu2+with Uracil and Its Thio Derivatives: A Theoretical Study. ChemPhysChem, 2004, 5, 1871-1878.	1.0	66
179	Unimolecular Reactivity of Strong Metal–Cation Complexes in the Gas Phase: Ethylenediamine–Cu+. Chemistry - A European Journal, 2004, 10, 2927-2934.	1.7	24
180	Experimental thermochemical study of two 2-alkylbenzimidazole isomers (alkyl=propyl and isopropyl). Journal of Chemical Thermodynamics, 2004, 36, 533-539.	1.0	12

#	Article	IF	CITATIONS
181	Gas-Phase Reactions between Urea and Ca2+:Â The Importance of Coulomb Explosions. Journal of Physical Chemistry A, 2004, 108, 10080-10088.	1.1	48
182	Theoretical Survey of the Potential Energy Surfaces Associated with the N+(3P,1D) + C2H4Reactions in the Gas Phaseâ€. Journal of Physical Chemistry A, 2004, 108, 9762-9767.	1.1	2
183	Theoretical Survey of the Potential Energy Surface of Ethylenediamine + Cu+Reactions. Journal of Physical Chemistry A, 2004, 108, 8367-8372.	1.1	22
184	Do coupling constants and chemical shifts provide evidence for the existence of resonance-assisted hydrogen bonds?. Molecular Physics, 2004, 102, 2563-2574.	0.8	126
185	Pushâ^'Pull Electronic Effects in Charge-Transfer Complexes:Â The Case of Nâ^'H and Nâ^'Me Lactams. Journal of Physical Chemistry A, 2004, 108, 10568-10577.	1.1	17
186	Li+ vs Cu+ Association to Toluene, Phenylsilane and Phenylgermane. Conventional vs Non-Conventional π-Complexes. European Journal of Mass Spectrometry, 2004, 10, 921-929.	0.5	8
187	Cyclization Triggered by Deprotonation: The Gas-Phase Acidity of 1,8-Chalcogen-Bridged Naphthalenes. ChemPhysChem, 2003, 4, 830-837.	1.0	4
188	Gas-Phase Reactivity of Uracil, 2-Thiouracil, 4-Thiouracil, and 2,4-Dithiouracil towards the Cu+ Cation: A DFT Study. ChemPhysChem, 2003, 4, 1011-1016.	1.0	45
189	Gas-Phase Chemistry of Ethynylamine, -Phosphine and -Arsine. Structure and Stability of their Cu+ and Ni+ Complexes. ChemPhysChem, 2003, 4, 72-78.	1.0	5
190	Enhanced Li+ Binding Energies in Alkylbenzene Derivatives: The Scorpion Effect. Chemistry - A European Journal, 2003, 9, 4330-4338.	1.7	28
191	Resonance-Assisted Intramolecular Chalcogen–Chalcogen Interactions?. Chemistry - A European Journal, 2003, 9, 4548-4555.	1.7	79
192	Binding energies of Cu+ to saturated and α,β-unsaturated alkanes, silanes and germanes. International Journal of Mass Spectrometry, 2003, 227, 401-412.	0.7	26
193	Specific reactivity of 1-alkenes with transition metal cations. International Journal of Mass Spectrometry, 2003, 228, 359-371.	0.7	5
194	Structure and stability of [C2H4N]+singlet-state cations: Comparison between DFT and high-level ab initio calculations. International Journal of Quantum Chemistry, 2003, 91, 438-445.	1.0	3
195	Lithium-Cation/΀ Complexes of Aromatic Systems. The Effect of Increasing the Number of Fused Rings. Journal of the American Chemical Society, 2003, 125, 10394-10401.	6.6	82
196	Two-Bond 15Nâ^'19F Spinâ^'Spin Coupling Constants (2hJN-F) across Nâ^'H+F Hydrogen Bonds. Journal of Physical Chemistry A, 2003, 107, 3126-3131.	1.1	23
197	Agostic vs π-Interactions in Complexes of Ethynylsilanes and Ethynylgermanes with Cu+in the Gas Phase. Journal of Physical Chemistry A, 2003, 107, 1370-1376.	1.1	37
198	Two-Bond 19Fâ^'15N Spinâ^'Spin Coupling Constants (2hJF-N) across Fâ^'H•••N Hydrogen Bonds. Journal of Physical Chemistry A, 2003, 107, 3121-3125.	1.1	42

#	Article	IF	CITATIONS
199	Substituent Effects on Enthalpies of Formation:Â Benzene Derivatives. Journal of Physical Chemistry A, 2003, 107, 366-371.	1.1	21
200	Interactions between Neutral Molecules and Ca2+:  An Assessment of Theoretical Procedures. Journal of Physical Chemistry A, 2003, 107, 10456-10461.	1.1	42
201	Basicity of lactones and cyclic ketones towards I2and ICl. An experimental and theoretical study. New Journal of Chemistry, 2003, 27, 1741-1747.	1.4	14
202	Two-Bond13Câ^'15N Spinâ^'Spin Coupling Constants (2hJC-N) Across Câ^'Hâ^'N Hydrogen Bondsâ€. Journal of Physical Chemistry A, 2003, 107, 3222-3227.	1.1	25
203	The importance of agostic-type interactions for the binding energies of Ni+to saturated and α,β-unsaturated alkanes, silanes and germanes. New Journal of Chemistry, 2003, 27, 1657-1664.	1.4	20
204	Characterization of intramolecular hydrogen bonds and competitive chalcogen–chalcogen interactions on the basis of the topology of the charge density. Physical Chemistry Chemical Physics, 2003, 5, 2942-2947.	1.3	92
205	Gas-phase reactivity of lactones: structure and stability of their Cu+complexes. Molecular Physics, 2003, 101, 1249-1258.	0.8	7
206	Is Allylphosphine a Carbon or a Phosphorus Base in the Gas Phase?. European Journal of Mass Spectrometry, 2003, 9, 245-255.	0.5	5
207	Competition between X···H··A Intramolecular Hydrogen Bonds and X····Y (X = O, S, and Y = Se, Te) Chalcogenâ^'Chalcogen Interactions. Journal of Physical Chemistry A, 2002, 106, 4661-4668.	1.1	126
208	Vibrational Spectra of Vinylarsine and Vinylstibine. An Experimental and Theoretical Study. Journal of Physical Chemistry A, 2002, 106, 6262-6270.	1.1	6
209	Experimental and Theoretical Investigation of the Reactions between Glucose and Cu+ in the Gas Phase. Journal of Physical Chemistry A, 2002, 106, 2641-2651.	1.1	28
210	Reactions between Glycolic Acid and Cu+ in the Gas Phase. An Experimental and Theoretical Study. Journal of Physical Chemistry A, 2002, 106, 9359-9368.	1.1	19
211	Ab Initio Study of the Structural, Energetic, Bonding, and IR Spectroscopic Properties of Complexes with Dihydrogen Bonds. Journal of Physical Chemistry A, 2002, 106, 9325-9330.	1.1	90
212	Gas-Phase Reactivity of Cu+and Ag+with Glycerol:Â an Experimental and Theoretical Study. Journal of Physical Chemistry A, 2002, 106, 10563-10577.	1.1	9
213	Nitro derivatives of pyrrole, furan and 1H-tetrazole: ring or nitro bases?. New Journal of Chemistry, 2002, 26, 1567-1574.	1.4	14
214	One-Bond (1dJH-H) and Three-Bond (3dJX-M) Spinâ^'Spin Coupling Constants Across Xâ^'H··Ĥâ^'M Dihydrogen Bonds. Journal of Physical Chemistry A, 2002, 106, 9331-9337.	1.1	29
215	Gas-Phase Chemistry of Ethyl and Vinyl Amines, Phosphines, and Arsines:  A DFT Study of the Structure and Stability of Their Cu+ Complexes. Journal of Physical Chemistry A, 2002, 106, 9306-9312.	1.1	10
216	1,8-Chalcogen-bridged naphthalenes. Strong carbon bases in the gas phase. New Journal of Chemistry, 2002, 26, 1747-1752.	1.4	33

#	Article	IF	CITATIONS
217	Triaziridine and tetrazetidine vs. cyclic water trimer and tetramer: A computational approach to the relationship between molecular and supramolecular conformational analysis. Physical Chemistry Chemical Physics, 2002, 4, 2123-2129.	1.3	10
218	The crucial role of agostic interactions in the binding of Cu+ to alkanes, silanes and germanes in the gas phase. Journal of Computational Methods in Sciences and Engineering, 2002, 2, 411-416.	0.1	1
219	Structural and Energetic Aspects of the Protonation of Phenol, Catechol, Resorcinol, and Hydroquinone. Chemistry - A European Journal, 2002, 8, 2900.	1.7	50
220	The Role of Chalcogen–Chalcogen Interactions in the Intrinsic Basicity and Acidity of -Chalcogenovinyl(thio)aldehydes HC(X)CHCHCYH (X=O, S; Y=Se, Te). Chemistry - A European Journ 2002, 8, 3999-4007.	al1.7	38
221	The Gas-Phase Acidity of HCP, CH3CP, HCAs, and CH3CAs: An Unexpected Enhanced Acidity of the Methyl Group. Chemistry - A European Journal, 2002, 8, 4919-4924.	1.7	29
222	A theoretical study of the interaction between Ni+ and small oxygen- and nitrogen-containing bases. International Journal of Mass Spectrometry, 2002, 217, 119-129.	0.7	16
223	Gas-phase lithium-cation basicities of some benzene derivatives. International Journal of Mass Spectrometry, 2002, 219, 445-456.	0.7	47
224	Modeling intrinsic basicities and acidities. Journal of Physical Organic Chemistry, 2002, 15, 174-186.	0.9	57
225	Vinyl- and ethynylsilanes, -germanes and -stannanes. A new case of dissociative proton attachment. Journal of Physical Organic Chemistry, 2002, 15, 509-513.	0.9	12
226	High-level ab initio study of the N+(3P)+SH2reactions in the gas phase: Role of spin-forbidden pathways. International Journal of Quantum Chemistry, 2002, 86, 130-137.	1.0	1
227	Perturbation of the intramolecular hydrogen bonds of glucose by Cu+association. International Journal of Quantum Chemistry, 2002, 86, 138-144.	1.0	4
228	The role of spin-forbidden processes in N+(3P) + NH3 reactions in the gas phase. Physical Chemistry Chemical Physics, 2001, 3, 179-183.	1.3	5
229	Hydrogen Bond vs Proton Transfer between Neutral Molecules in the Gas Phase. Journal of Physical Chemistry A, 2001, 105, 7481-7485.	1.1	57
230	Acidity Trends in α,β-Unsaturated Alkanes, Silanes, Germanes, and Stannanes. Journal of the American Chemical Society, 2001, 123, 6353-6359.	6.6	43
231	Synthesis, X-ray Structure, and Properties of 2-(1'-Pyridin-2'-one)Benzimidazole. Journal of Physical Chemistry B, 2001, 105, 12759-12770.	1.2	9
232	Thermochemistry of the reactions between CN+ and H2O in the gas phase. Molecular Physics, 2001, 99, 1129-1137.	0.8	4
233	Computational chemistry: A useful (sometimes mandatory) tool in mass spectrometry studies. Mass Spectrometry Reviews, 2001, 20, 195-245.	2.8	160
234	Vibrational Spectra, DFT Calculations, and Assignments of the syn and the gauche Forms of Vinylphosphine. Journal of Molecular Spectroscopy, 2001, 205, 252-260.	0.4	12

#	Article	IF	CITATIONS
235	Spontaneous Self-Ionization in the Gas Phase: A Theoretical Prediction. ChemPhysChem, 2001, 2, 465-467.	1.0	27
236	Computational chemistry: A useful (sometimes mandatory) tool in mass spectrometry studies. , 2001, 20, 195.		1
237	Exploring the Potential Energy Surface Associated with the HBr Loss from 2-Bromobutane Radical Cations. Journal of Physical Chemistry A, 2000, 104, 9287-9294.	1.1	1
238	Cu+ binding energies. Dramatic failure of the G2 method vs. good performance of the B3LYP approach. Chemical Physics Letters, 2000, 320, 129-138.	1.2	93
239	Is ionized cyclopropylamine cyclic?. International Journal of Mass Spectrometry, 2000, 199, 59-69.	0.7	12
240	Cu+ reactivity trends in sp, sp2, and sp3 nitrogen, phosphorus, and arsenic containing bases. International Journal of Mass Spectrometry, 2000, 201, 215-231.	0.7	25
241	The structure and stability of Sb4H+ clusters: The importance of nonclassical structures. Journal of Chemical Physics, 2000, 112, 2258-2264.	1.2	13
242	The performance of density-functional theory in challenging cases: Halogen oxides. Journal of Chemical Physics, 2000, 112, 6131-6140.	1.2	49
243	Are the Thiouracils Sulfur Bases in the Gas-phase?. Journal of Physical Chemistry A, 2000, 104, 5122-5130.	1.1	66
244	A Theoretical Study of the Reaction between N+(3P) and Formaldehyde and Related Processes in the Gas Phase. Journal of Physical Chemistry A, 2000, 104, 11132-11139.	1.1	2
245	The P4··À·Li+Ion in the Gas Phase: A Planetary System. Journal of the American Chemical Society, 2000, 122, 4451-4454.	6.6	42
246	Reactions of Urea with Cu+ in the Gas Phase:  An Experimental and Theoretical Study. Journal of Physical Chemistry A, 2000, 104, 3132-3141.	1.1	60
247	Protonation and Deprotonation of Thiomalonaldehyde. The Role of the Intramolecular Hydrogen Bond. , 2000, , 393-402.		2
248	Isomerization and dissociation processes of protonated benzene and protonated fulvene in the gas phase. International Journal of Mass Spectrometry, 1999, 185-187, 241-251.	0.7	23
249	Performance of density functional theory methods for the treatment of metal-ligand dications. Chemical Physics Letters, 1999, 307, 244-252.	1.2	39
250	4-Nitropyrazole: a nitrogen or an oxygen base in the gas phase?. Journal of Physical Organic Chemistry, 1999, 12, 787-795.	0.9	17
251	Density functional theory study on ethanol dimers and cyclic ethanol trimers. Journal of Chemical Physics, 1999, 111, 3855-3861.	1.2	92
252	Ultrafast photoinduced dissipative hydrogen switching dynamics in thioacetylacetone. Physical Chemistry Chemical Physics, 1999, 1, 1249-1257.	1.3	63

#	Article	IF	CITATIONS
253	The reactions of Cl ⁺ (³ P) and Cl ⁺ (¹ D) with hydrogen sulphide. A G2 molecular orbital study. Molecular Physics, 1999, 96, 231-241.	0.8	2
254	Enthalpies of Formation ofN-Substituted Pyrazoles and Imidazoles. Journal of Physical Chemistry A, 1999, 103, 9336-9344.	1.1	63
255	The structure of N-aminopyrazole in the solid state and in solution: an experimental and computational study. Physical Chemistry Chemical Physics, 1999, 1, 5113-5120.	1.3	14
256	A Gas-Phase Basicity Scale for Selenocarbonyl Compounds Based on High-Levelab Initioand Density Functional Theory Calculations. Journal of Physical Chemistry A, 1999, 103, 1662-1668.	1.1	25
257	Gas-Phase Basicity and Acidity Trends in α,β-Unsaturated Amines, Phosphines, and Arsines. Journal of the American Chemical Society, 1999, 121, 4653-4663.	6.6	47
258	Substituent Effects on the Strength of the Intramolecular Hydrogen Bond of Thiomalonaldehyde. Journal of Organic Chemistry, 1999, 64, 2314-2321.	1.7	48
259	Ab Initio Molecular Orbital Study of XO2+ (X = F, Cl, Br, I) Systems. Journal of Physical Chemistry A, 1999, 103, 2793-2800.	1.1	19
260	The mills-nixon effect: Fallacies, facts and chemical relevance. Theoretical and Computational Chemistry, 1999, 6, 47-101.	0.2	22
261	The reactions of Cl+(3P) and Cl+(1D) with hydrogen sulphide. A G2 molecular orbital study. Molecular Physics, 1999, 96, 231-241.	0.8	4
262	Stabilization of the zwitterionic forms of three-membered rings by cationization in the gas phase. Computational and Theoretical Chemistry, 1998, 433, 217-225.	1.5	8
263	GIAO ab initio calculations of nuclear shieldings of monosubstituted benzenes and N-substituted pyrazoles. Computational and Theoretical Chemistry, 1998, 453, 255-273.	1.5	22
264	Exploring the potential energy surfaces of the reactions of O+(4S) and O+(2D) with ammonia. International Journal of Mass Spectrometry, 1998, 179-180, 77-90.	0.7	5
265	Density Functional Theory Calculations on Hydrogen-Bonded Tropoloneâ^'(H2O)2 Clusters. Journal of Physical Chemistry A, 1998, 102, 8174-8181.	1.1	19
266	Proton Transfer in Dissociative Protonation Processes. Journal of Physical Chemistry A, 1998, 102, 1356-1364.	1.1	18
267	Role of Cu+Association on the Formamide → Formamidic Acid → (Aminohydroxy)carbene Isomerizations in the Gas Phase. Journal of Physical Chemistry A, 1998, 102, 4652-4659.	1.1	38
268	Exploring the Potential Energy Surface of the Association of Cu+to Oxaziridine, Nitrosomethane, and Formaldoxime. Journal of Physical Chemistry A, 1998, 102, 10120-10127.	1.1	22
269	Very strong hydrogen bonds in neutral molecules: The phosphinic acid dimers. Journal of Chemical Physics, 1998, 109, 2685-2693.	1.2	100
270	Modeling the Interactions between Peptide Functions and Cu(I): Formamideâ^'Cu+ Reactions in the Gas Phase. Journal of the American Chemical Society, 1998, 120, 5411-5426.	6.6	75

#	Article	IF	CITATIONS
271	High level ab initio and density functional theory studies on methanol–water dimers and cyclic methanol(water)2 trimer. Journal of Chemical Physics, 1998, 109, 139-150.	1.2	126
272	Ab initio and density functional theory calculations on the protonated species of As4 clusters. Journal of Chemical Physics, 1998, 108, 8957-8963.	1.2	15
273	The Structure of Aminoazoles and Its Relationship with Aromaticity. Crystal and Molecular Structure of Two Polymorphic Forms of 4-Aminopyrazole. Heterocycles, 1998, 49, 157.	0.4	12
274	Thermochemistry of the reactions of F+(3P) and F+(1D) with hydrogen sulphide a molecular orbital study. Molecular Physics, 1997, 91, 503-512.	0.8	2
275	Acetamidineâ^'X+ and Guanidineâ^'X+ (X = Li, Na, Mg, Al) Complexes in the Gas-Phase. A Theoretical Study. Journal of Physical Chemistry A, 1997, 101, 2489-2495.	1.1	8
276	Role of Chelation and Resonance on the Intrinsic Acidity and Basicity of Tropolone. Journal of Organic Chemistry, 1997, 62, 3200-3207.	1.7	36
277	G2 Molecular Orbital Study of the Reactions of Water with Cl+(3P) and Cl+(1D). Journal of Physical Chemistry A, 1997, 101, 1722-1730.	1.1	10
278	Reactions between Guanidine and Cu+in the Gas Phase. An Experimental and Theoretical Study. Journal of Physical Chemistry A, 1997, 101, 5931-5941.	1.1	64
279	Gas-Phase Basicities and Acidities of Ethyl-, Vinyl-, and Ethynylarsine. An Experimental and Theoretical Study. Journal of Physical Chemistry A, 1997, 101, 9525-9530.	1.1	28
280	Structural Effects on the Intrinsic Basicities of α,β-Unsaturated Lactones and Ketones. Journal of Organic Chemistry, 1997, 62, 8439-8448.	1.7	20
281	High-Level ab Initio Calculations on the Intramolecular Hydrogen Bond in Thiomalonaldehyde. Journal of Physical Chemistry A, 1997, 101, 9710-9719.	1.1	95
282	Study of the methanol trimer potential energy surface. Journal of Chemical Physics, 1997, 107, 3592-3601.	1.2	131
283	Vibrational spectra of N-methylpyrazole: an experimental and theoretical study. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 1997, 53, 1383-1398.	2.0	20
284	High-levelab initio versus DFT calculations on (H2O2)2 and H2O2-H2O complexes as prototypes of multiple hydrogen bond systems. , 1997, 18, 1124-1135.		127
285	Title is missing!. Journal of Computational Chemistry, 1997, 18, 1124.	1.5	49
286	Thermochemistry of the reactions of F+(3P) and F+(1D) with hydrogen sulphide: a molecular orbital study. Molecular Physics, 1997, 91, 503-512.	0.8	3
287	Tetraphosphacubane: An Unexpectedly Strong Base in the Gas Phaseâ€. Journal of Organic Chemistry, 1996, 61, 7813-7818.	1.7	21
288	A New Bond from an Old Molecule:Â Formation, Stability, and Structure of P4H+. Journal of the American Chemical Society, 1996, 118, 1126-1130.	6.6	51

#	Article	IF	CITATIONS
289	Intrinsic Acidity and Basicity of 2,2,2-Trifluoroethanethiol. The First Experimental and Theoretical Studyâ€. Journal of Organic Chemistry, 1996, 61, 5485-5491.	1.7	10
290	The theory of atoms in molecules as a tool to investigate the reactivity of tetraphosphacubane. Canadian Journal of Chemistry, 1996, 74, 901-909.	0.6	4
291	Binding energies of metal monocations to Î'-lactones and Î'-lactams. A theoretical study of cyclization effects. Structural Chemistry, 1996, 7, 309-319.	1.0	6
292	Cooperative effects in water trimers. The performance of density functional approaches. Computational and Theoretical Chemistry, 1996, 371, 1-10.	1.5	117
293	Acetamidine-Mg+(2S) complexes; the performance of different exchange and correlation functionals. Computational and Theoretical Chemistry, 1996, 371, 313-324.	1.5	7
294	High-level ab initio calculations on CH+2(2A1) + PO(2II) reactions. International Journal of Quantum Chemistry, 1996, 57, 559-566.	1.0	1
295	High-level ab initio calculations on the 1,2-dithioglyoxal/1,2-dithiete isomerism. Chemical Physics Letters, 1996, 263, 407-413.	1.2	17
296	Modelling Intrinsic Basicities: The Use of the Electrostatic Potentials and the Atoms-in-Molecules Theory. Theoretical and Computational Chemistry, 1996, 3, 407-456.	0.2	20
297	The geometry of pyrazole: A test forab initiocalculations. Journal of Computational Chemistry, 1995, 16, 263-272.	1.5	89
298	Microwave spectra and ab initio calculations of 1-nitropyrazole. Journal of Molecular Structure, 1995, 344, 241-250.	1.8	17
299	Ab initio study of the effect of N-substituents on properties of pyrazoles. Tetrahedron, 1995, 51, 7045-7062.	1.0	34
300	Hybridization effects on the intrinsic basicities of phosphorus and nitrogen containing bases. Computational and Theoretical Chemistry, 1995, 338, 225-233.	1.5	15
301	Bent Bonds in Benzocyclopropenes and Their Fluorinated Derivatives. Journal of Organic Chemistry, 1995, 60, 1638-1646.	1.7	34
302	Potential energy surfaces of C2v and D3h ozone complexes with Li+. Journal of Chemical Physics, 1995, 103, 253-265.	1.2	7
303	Structure, vibrational frequencies, and thermodynamic properties of hydrogen peroxide dimers: An ab initio molecular orbital study. Journal of Chemical Physics, 1994, 100, 2871-2877.	1.2	39
304	Is the depletion of ozone by HSO an exothermic process?. Journal of Chemical Physics, 1994, 101, 2175-2179.	1.2	33
305	Structure, vibrational frequencies and thermodynamic properties of hydrogen peroxide—water dimers. An ab initio molecular orbital study. Chemical Physics Letters, 1994, 219, 45-52.	1.2	21
306	Thermochemistry of the reactions of PH+2 (1A1) and PH+2 (3B1) with CO. A G2 molecular orbital study. Chemical Physics Letters, 1994, 223, 240-249.	1.2	12

#	Article	IF	CITATIONS
307	Cooperative effects in the cyclic trimer of methanol. An ab initio molecular orbital study. Computational and Theoretical Chemistry, 1994, 314, 73-81.	1.5	137
308	An ab initio study of the azoniaspiro[2.2]pentane cation (aziridineaziridinium ion). Computational and Theoretical Chemistry, 1994, 309, 45-52.	1.5	3
309	Dissociative Attachment of Protons to 1-Fluoro- and 1-Chloroadamantane in the Gas Phase. Journal of the American Chemical Society, 1994, 116, 2486-2492.	6.6	41
310	High-level ab initio calculations on the structures and relative stabilities of [O, P, H] systems and their cations. Chemical Physics Letters, 1993, 209, 557-563.	1.2	14
311	Cyclization effects on the gas-phase basicities of esters and ethers. An experimental and MO study. Journal of the American Chemical Society, 1993, 115, 7389-7396.	6.6	45
312	Thiocarbonyl versus carbonyl compounds: A comparison of intrinsic reactivities. Journal of the American Chemical Society, 1993, 115, 12468-12476.	6.6	83
313	Stabilization of nitrogen-containing three-membered rings by proton and lithium ion association in the gas phase. Journal of the American Chemical Society, 1993, 115, 11074-11083.	6.6	34
314	On Na atom excitation in low energy H+Na collisions. Journal of Physics B: Atomic, Molecular and Optical Physics, 1992, 25, L101-L104.	0.6	6
315	Cooperative (nonpairwise) effects in water trimers: An ab initio molecular orbital study. Journal of Chemical Physics, 1992, 97, 6628-6638.	1.2	354
316	Gas-phase basicities of .betalactams and azetidines. Cyclization effects. An experimental and theoretical study. Journal of the American Chemical Society, 1992, 114, 4728-4736.	6.6	45
317	Nature of the hydrogen bond: crystallographic versus theoretical description of the O-HN(sp 2) hydrogen bond. Acta Crystallographica Section B: Structural Science, 1992, 48, 700-713.	1.8	19
318	A G1 ab initio MO study of the distonic ions H2Cî—,Oî—,Si+ and their isomers. Chemical Physics Letters, 1992, 197, 581-585.	1.2	10
319	Ab initio molecular orbital treatment of hydroxylamine-X+-water and hydroxylamine-X+-ammonia (X =) Tj ETQq1	1 0.78431 0.9	4 rgBT /Over
320	An AB initio molecular orbital study of the structure, energetics and bond activation of Al+ complexes. Computational and Theoretical Chemistry, 1991, 234, 357-371.	1.5	14
321	Partial charge exchange and excitation cross sections for C3+ + H collisions. Zeitschrift FÃ1⁄4r Physik D-Atoms Molecules and Clusters, 1991, 21, S245-S246.	1.0	0
322	AB initioMO study of the halogen cation basicities of some organic bases. Journal of Physical Organic Chemistry, 1991, 4, 177-191.	0.9	16
323	Charge exchange and excitation in C3++H collisions. I. Molecular calculations. Journal of Physics B: Atomic, Molecular and Optical Physics, 1991, 24, 4049-4060.	0.6	13
324	A study of core effects in quasimolecular structure. Computational and Theoretical Chemistry, 1990, 205, 43-61.	1.5	2

19

#	Article	IF	CITATIONS
325	Structure of 1,2,6-thiadiazine 1,1-dioxides. Journal of Physical Organic Chemistry, 1990, 3, 470-476.	0.9	12
326	Enhanced Li+ binding energies of some azines: a molecular orbital study. Theoretica Chimica Acta, 1990, 77, 1-15.	0.9	36
327	Bond activation by protonation in the gas phase. Chemical Physics Letters, 1990, 172, 471-477.	1.2	68
328	Charge exchange in He++ Na(3p) collisions. Journal of Physics B: Atomic, Molecular and Optical Physics, 1990, 23, L373-L377.	0.6	6
329	Molecular treatment of mutual neutralisation in slow Li++H-collisions. Journal of Physics B: Atomic, Molecular and Optical Physics, 1990, 23, 2797-2810.	0.6	34
330	Phthalocyanine analogues. Part 1. Synthesis, spectroscopy, and theoretical study of 8,18-dihydrodibenzo[b,l]-5,7,8,10,15,17,18,20-octa-azaporphyrin and MNDO calculations on its related Hückel heteroannulene. Journal of the Chemical Society Perkin Transactions II, 1989, , 797-803.	0.9	37
331	A new method to calculate lifetimes of atomic and molecular autoionizing states. Computational and Theoretical Chemistry, 1989, 202, 235-247.	1.5	1
332	A MO analysis of the aromaticity of some nitrogen heterocyclic compounds. Computational and Theoretical Chemistry, 1989, 201, 17-37.	1.5	21
333	A molecular orbital study of the conformation (inversion and rotational barriers) and electronic properties of sulfamide. Canadian Journal of Chemistry, 1989, 67, 2227-2236.	0.6	18
334	Molecular Treatment of Charge Exchange in Slow C3++ H Collisions. Physica Scripta, 1989, T28, 67-70.	1.2	7
335	Continuum versus discretized wavefunctions. The importance of being well normalized. Chemical Physics Letters, 1988, 149, 85-88.	1.2	7
336	Counterpoise estimates of the BSSE in the evaluation of protonation energies. Theoretica Chimica Acta, 1988, 73, 307-316.	0.9	13
337	Study of the gas-phase basicity of 1-methylazaindole, 7-methyl-7H-pyrrolo[2,3-b]pyridine, and related compounds. Journal of the American Chemical Society, 1988, 110, 2699-2705.	6.6	28
338	Energies and widths of (1s23l3l′) resonant states ofC2+,N3+,O4+, andNe6+. Physical Review A, 1988, 38, 1094-1097.	1.0	26
339	Excitation and charge exchange in He++Na collisions. Journal of Physics B: Atomic, Molecular and Optical Physics, 1988, 21, 119-124.	0.6	18
340	Comparison of the conventional and pseudopotential Feshbach methods: N5+(3l,) Tj ETQq0 0 0 rgBT /Overlock 2261-2272.	10 Tf 50 1 0.6	147 Td (3l')1Se 19
341	Feshbach Resonant Energies and Widths in a Pseudopotential Approach. Europhysics Letters, 1987, 4, 799-804.	0.7	38
342	Molecular mechanism for hydrogen-hydrogen excitation collisions. Physical Review A, 1987, 36, 3630-3638.	1.0	11

#	Article	IF	CITATIONS
343	Simple discretization method for autoionization widths. I. Theory. Physical Review A, 1987, 36, 4179-4186.	1.0	54
344	Protonation of azines: An ab initio molecular orbital study. Computational and Theoretical Chemistry, 1987, 150, 135-150.	1.5	57
345	Energies and radial couplings for the 1Σ and 3Σ states of the NaHe+ quasimolecule. Computational and Theoretical Chemistry, 1987, 150, 345-360.	1.5	9
346	Electrophilic aromatic nitration in the gas phase. Journal of the American Chemical Society, 1987, 109, 5092-5097.	6.6	55
347	Feshbach and pseudopotential theories. A useful analogy. Journal of Chemical Physics, 1987, 87, 6635-6642.	1.2	35
348	Feshbachâ€ŧype calculation of autoionizing states of the BeHe4+quasimolecule. Journal of Chemical Physics, 1987, 86, 6927-6936.	1.2	7
349	Binding of ammonium ion to azoles in the gas phase. A theoretical study of the N.cntdot.H+.cntdot.N ionic hydrogen bond. Journal of Organic Chemistry, 1987, 52, 1713-1720.	1.7	17
350	Molecular (Feshbach) treatment of charge exchange Li3++He collisions. I. Energies and couplings. Journal of Chemical Physics, 1986, 84, 5412-5421.	1.2	10
351	Molecular (Feshbach) treatment of charge exchange Li3++He collisions. II. Cross sections. Journal of Chemical Physics, 1986, 84, 5422-5426.	1.2	15
352	Structure and charge distribution of 4-substituted benzenediazonium ions Computational and Theoretical Chemistry, 1985, 120, 377-382.	1.5	2
353	Influence of the tautomeric forms of azaindoles on their basicity in solution. Computational and Theoretical Chemistry, 1984, 107, 263-268.	1.5	5
354	Conformation of four-membered rings. Comparison between azetidine and 1,3-diazetidine. Computational and Theoretical Chemistry, 1984, 107, 269-274.	1.5	4
355	Theoretical study on the stable conformers of 1,3-diazetidine. Computational and Theoretical Chemistry, 1984, 106, 251-257.	1.5	5
356	A theoretical study of the structure, charge distribution and gas-phase basicity of azaindoles. Tetrahedron, 1983, 39, 2851-2861.	1.0	29
357	A theoretical study of the charge distribution of aminopyridines, aminopyrimidines, and some diazine N-oxides. Journal of the Chemical Society Perkin Transactions II, 1983, , 1735-1740.	0.9	12
358	Prediction of proton affinities and protonation sites using a multivariate linear correlation. Journal of the Chemical Society Perkin Transactions II, 1982, , 1409-1418.	0.9	18
359	The effect of substituents on the structure of dioxirane. Journal of Molecular Structure, 1980, 69, 217-226.	1.8	10
360	A theoretical study of the structure and charge distribution of some alkynylcarbenium ions. Journal of the American Chemical Society, 1980, 102, 947-950.	6.6	21

#	Article	IF	CITATIONS
361	Structure and charge distribution of some alkynoyl cations. Theoretica Chimica Acta, 1979, 53, 337-343.	0.9	6
362	Proton affinities and preferred protonation sites in 3- and 4-substituted pyridines. Prediction from 1s orbital energies. Journal of the American Chemical Society, 1979, 101, 6520-6524.	6.6	49
363	Influence of polarization functions on molecular electrostatic potentials. Theoretica Chimica Acta, 1978, 47, 263-273.	0.9	19
364	Theoretical study of the structure of azetidine. Journal of Molecular Structure, 1978, 43, 251-257.	1.8	23
365	Calculations on the inversion of anhydrous and hydrated aziridine. Molecular Physics, 1977, 34, 1429-1436.	0.8	7
366	A theoretical study of electrophilic substitution on aminophenols and aminobenzenethiols. Tetrahedron, 1975, 31, 245-249.	1.0	1
367	Disrupting bonding in azoles through beryllium bonds: Unexpected coordination patterns and acidity enhancement . Journal of Chemical Physics, 0, , .	1.2	2
368	On predicting bonding patterns of small clusters of alkaline-earth (Be, Mg) and triel (B, Al) fluorides: a balance between atomic size and electron-deficient character. Molecular Physics, 0, , .	0.8	0