Minna Kotilainen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8424081/publications.pdf

Version: 2024-02-01

1683934 1872570 7 96 5 6 citations h-index g-index papers 7 7 7 110 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Influence of microstructure on temperature-induced ageing mechanisms of different solar absorber coatings. Solar Energy Materials and Solar Cells, 2014, 120, 462-472.	3.0	36
2	Influence of temperature-induced copper diffusion on degradation of selective chromium oxy-nitride solar absorber coatings. Solar Energy Materials and Solar Cells, 2016, 145, 323-332.	3.0	23
3	Temperature-induced ageing of solar absorbers on plain and anodized aluminium substrates. Solar Energy Materials and Solar Cells, 2015, 134, 244-251.	3.0	15
4	Aluminium and tantalum nitride barriers against copper diffusion in solar absorbers. Surface Engineering, 2016, 32, 615-623.	1.1	11
5	Hafnium oxide thin films as a barrier against copper diffusion in solar absorbers. Solar Energy Materials and Solar Cells, 2017, 166, 140-146.	3.0	10
6	Optical characterization of hafnia films deposited by ALD on copper cold-rolled sheets by difference ellipsometry. Applied Surface Science, 2017, 421, 420-423.	3.1	1
7	The effect of carbon and nickel additions on the precursor synthesis of Cr3C2-Ni nanopowder. Ceramics International, 2018, 44, 9338-9346.	2.3	0