
Shahrokh Zand-Parsa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8423552/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparability Analyses of the SPI and RDI Meteorological Drought Indices in Different Climatic Zones. Water Resources Management, 2011, 25, 1737-1757.	1.9	115
2	Evapotranspiration, crop coefficients, and physiological responses of citrus trees in semi-arid climatic conditions. Agricultural Water Management, 2020, 227, 105838.	2.4	63
3	Evaluation of Evapotranspiration over a Semiarid Region Using Multiresolution Data Sources. Journal of Hydrometeorology, 2019, 20, 947-964.	0.7	62
4	Development and evaluation of integrated water and nitrogen model for maize. Agricultural Water Management, 2006, 81, 227-256.	2.4	50
5	Simulation of evaporation, coupled liquid water, water vapor and heat transport through the soil medium. Agricultural Water Management, 2013, 130, 168-177.	2.4	43
6	Coupling and testing a new soil water module in DSSAT CERES-Maize model for maize production under semi-arid condition. Agricultural Water Management, 2016, 163, 90-99.	2.4	43
7	Application of A Simple Landsat-MODIS Fusion Model to Estimate Evapotranspiration over A Heterogeneous Sparse Vegetation Region. Remote Sensing, 2019, 11, 741.	1.8	43
8	Utilization of Time-Based Meteorological Droughts to Investigate Occurrence of Streamflow Droughts. Water Resources Management, 2010, 24, 4287-4306.	1.9	42
9	Logistic model application for prediction of maize yield under water and nitrogen management. Agricultural Water Management, 2011, 99, 51-57.	2.4	42
10	Regional classification for dryland agriculture in southern Iran. Journal of Arid Environments, 2002, 50, 333-341.	1.2	40
11	Assessing Crop Water Stress Index of Citrus Using In-Situ Measurements, Landsat, and Sentinel-2 Data. International Journal of Remote Sensing, 2021, 42, 1893-1916.	1.3	36
12	Hourly air temperature driven using multi-layer perceptron and radial basis function networks in arid and semi-arid regions. Theoretical and Applied Climatology, 2012, 109, 519-528.	1.3	30
13	Determination of the potential evapotranspiration and crop coefficient for saffron using a water-balance lysimeter. Archives of Agronomy and Soil Science, 2011, 57, 727-740.	1.3	29
14	Daily Stream Flow Prediction Capability of Artificial Neural Networks as influenced by Minimum Air Temperature Data. Biosystems Engineering, 2006, 95, 557-567.	1.9	26
15	Optimal applied water and nitrogen for corn. Agricultural Water Management, 2001, 52, 73-85.	2.4	24
16	Investigation of spatio-temporal patterns of seasonal streamflow droughts in a semi-arid region. Natural Hazards, 2013, 69, 1697-1720.	1.6	21
17	Nitrogen and water use efficiencies and yield response of barley cultivars under different irrigation and nitrogen regimes in a semi-arid Mediterranean climate. Archives of Agronomy and Soil Science, 2015, 61, 15-32.	1.3	19
18	Estimation of instantaneous air temperature using remote sensing data. International Journal of Remote Sensing, 2018, 39, 258-275.	1.3	19

SHAHROKH ZAND-PARSA

#	Article	IF	CITATIONS
19	Estimation of daily minimum land surface air temperature using MODIS data in southern Iran. Theoretical and Applied Climatology, 2017, 130, 1149-1161.	1.3	18
20	Modification and validation of maize simulation model (MSM) at different applied water and nitrogen levels under furrow irrigation. Archives of Agronomy and Soil Science, 2011, 57, 401-420.	1.3	16
21	Assessment of seasonal characteristics of streamflow droughts under semiarid conditions. Natural Hazards, 2016, 82, 1541-1564.	1.6	16
22	Soil hydraulic conductivity function based on specific liquid–vapor interfacial area around the soil particles. Geoderma, 2004, 119, 143-157.	2.3	13
23	Modification of maize simulation model for predicting growth and yield of winter wheat under different applied water and nitrogen. Agricultural Water Management, 2015, 150, 18-34.	2.4	13
24	Prediction of soil hydraulic parameters by inverse method using genetic algorithm optimization under field conditions. Archives of Agronomy and Soil Science, 2010, 56, 13-28.	1.3	12
25	Estimation of daily global solar irradiation under different sky conditions in central and southern Iran. Theoretical and Applied Climatology, 2017, 127, 587-596.	1.3	11
26	Extinction coefficients and radiation use efficiency of barley under different irrigation regimes and sowing dates. Agricultural Water Management, 2016, 178, 126-136.	2.4	10
27	Environmental and economic appraisal of agricultural water desalination use in South Iran: a comparative study of tomato production. Journal of Applied Water Engineering and Research, 2017, 5, 91-102.	1.0	10
28	Physiological responses of orange trees subject to regulated deficit irrigation and partial root drying. Irrigation Science, 2021, 39, 441-455.	1.3	10
29	Modification of Angstrom Model for Estimation of Global Solar Radiation in an Intermountain Region of Southern Iran. Energy and Environment, 2011, 22, 911-924.	2.7	9
30	Preparation of frost atlas using different interpolation methods in a semiarid region of south of Iran. Theoretical and Applied Climatology, 2012, 108, 159-171.	1.3	9
31	Evaluation of Yield, Actual Crop Evapotranspiration and Water Productivity of Two Canola Cultivars as Influenced by Transplanting and Seeding and Deficit Irrigation. International Journal of Plant Production, 2019, 13, 23-33.	1.0	9
32	Estimation of yield and dry matter of winter wheat using logistic model under different irrigation water regimes and nitrogen application rates. Archives of Agronomy and Soil Science, 2014, 60, 1661-1676.	1.3	8
33	Physiological and yield responses of rainfed grapevine under different supplemental irrigation regimes in Fars province, Iran. Scientia Horticulturae, 2016, 202, 133-141.	1.7	7
34	Enhancing estimation accuracy of daily maximum, minimum, and mean air temperature using spatio-temporal ground-based and remote-sensing data in southern Iran. International Journal of Remote Sensing, 2018, 39, 6316-6339.	1.3	7
35	Improved soil hydraulic conductivity function based on specific liquid–vapour interfacial area around the soil particles. Geoderma, 2006, 132, 20-30.	2.3	6
36	In-depth investigation of precipitation-based climate change and cyclic variation in different climatic zones. Theoretical and Applied Climatology, 2014, 116, 565-583.	1.3	6

SHAHROKH ZAND-PARSA

#	Article	IF	CITATIONS
37	Adjustment of radiation use efficiency of winter wheat by air temperature at different irrigation regimes and nitrogen rates. Archives of Agronomy and Soil Science, 2014, 60, 49-66.	1.3	6
38	Evaluation of groundwater potential recharge models considering estimated bare soil evaporation, in a semi-arid foothill region. Hydrological Sciences Journal, 2016, 61, 162-172.	1.2	6
39	Corn crop water stress index under different redroot pigweed (<i>Amaranthus retroflexus</i> L.) densities and irrigation regimes. Archives of Agronomy and Soil Science, 2010, 56, 285-293.	1.3	5
40	Analysis of long-term trends in air and soil temperature in a semi-arid region in Iran. Environmental Earth Sciences, 2018, 77, 1.	1.3	4
41	Influences of natural salinity sources and human actions on the Shapour River salinity during the recent streamflow reduction period. Environmental Monitoring and Assessment, 2021, 193, 696.	1.3	4
42	Relationship between Soluble and Extractable Phosphorus in Some Calcareous Soils of Iran. Journal of Environmental Quality, 1993, 22, 578-583.	1.0	3
43	Developing a dynamic yield and growth model for maize under various water and nitrogen regimes. Archives of Agronomy and Soil Science, 2014, 60, 1173-1191.	1.3	3
44	Barley Grain Yield and Protein Content Response to Deficit Irrigation and Sowing Dates in Semi-Arid Region. Modern Applied Science, 2016, 10, 193.	0.4	3
45	Optimization of applied irrigation water and nitrogen fertilizer for barley in a semiâ€arid region: a case study in Iran. Irrigation and Drainage, 2020, 69, 559-571.	0.8	3
46	Predicting the seedling emergence time of sugar beet (Beta vulgaris) using beta models. Physiology and Molecular Biology of Plants, 2020, 26, 2329-2338.	1.4	3
47	Influence of Climatic Variability on Detected Drought Spatio/Temporal Variability and Characteristics by SPI and RDI. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 2022, 46, 3369-3385.	1.0	3
48	Evapotranspiration model selection for estimation of actual evaporation from bare soil, as required in annual potential groundwater recharge studies of a semi-arid foothill region. Archives of Agronomy and Soil Science, 2015, 61, 1455-1472.	1.3	2
49	Optimization of a New Inverse Method for Estimation of Individual Soil Hydraulic Parameters under Field Conditions. Transactions of the ASABE, 2016, 59, 1257-1266.	1.1	2
50	Groundwater potential recharge estimation in bare soil using three soil moisture accounting models: field evaluation for a semi-arid foothill region. Arabian Journal of Geosciences, 2017, 10, 1.	0.6	2
51	Development of a Simulation Model for Estimation of Potential Recharge in a Semi-arid Foothill Region. Water Resources Management, 2017, 31, 1535-1556.	1.9	1
52	Spatio-temporal variability of extreme precipitation characteristics under different climatic conditions in Fars province, Iran. Environment, Development and Sustainability, 0, , 1.	2.7	1
53	Development of a simulation model for sugar beet growth under water and nitrogen deficiency. Irrigation Science, 2022, 40, 337-358.	1.3	1
54	Estimation of Sugar Beet Yield and its Dry Matter Partitioning Under Different Irrigation and Nitrogen Levels. Modern Applied Science, 2016, 11, 143.	0.4	0

#	Article	IF	CITATIONS
55	Supplemental irrigation management of rainfed grapevines under drought conditions using the CropSyst model. Spanish Journal of Agricultural Research, 2020, 18, e1203.	0.3	0