
Vahid Sandoghdar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8423362/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Optimized analysis for sensitive detection and analysis of single proteins via interferometric scattering microscopy. Journal Physics D: Applied Physics, 2022, 55, 054002.	1.3	6
2	High-resolution vibronic spectroscopy of a single molecule embedded in a crystal. Journal of Chemical Physics, 2022, 156, 104301.	1.2	10
3	PiSCAT: A Python Package for Interferometric Scattering Microscopy. Journal of Open Source Software, 2022, 7, 4024.	2.0	1
4	Precision size and refractive index analysis of weakly scattering nanoparticles in polydispersions. Nature Methods, 2022, 19, 586-593.	9.0	45
5	Nanoscale Imaging of Live Cells with Confocal Interferometric Scattering Microscopy (iSCAT). , 2022, ,		1
6	Long-Range High-Speed 3D Tracking via Interferometric Scattering Microscopy. , 2022, , .		1
7	Precision single-particle localization using radial variance transform. Optics Express, 2021, 29, 11070.	1.7	11
8	Nanoscopic Charge Fluctuations in a Gallium Phosphide Waveguide Measured by Single Molecules. Physical Review Letters, 2021, 126, 133602.	2.9	10
9	Single organic molecules for photonic quantum technologies. Nature Materials, 2021, 20, 1615-1628.	13.3	79
10	On Quantum Efficiency Measurements and Plasmonic Antennas. ACS Photonics, 2021, 8, 1508-1521.	3.2	13
11	Engineering Long-Lived Vibrational States for an Organic Molecule. Physical Review Letters, 2021, 127, 123603.	2.9	14
12	Single-Molecule Vacuum Rabi Splitting: Four-Wave Mixing and Optical Switching at the Single-Photon Level. Physical Review Letters, 2021, 127, 133603.	2.9	38
13	Nonlinear optics with one molecule and two photons. , 2021, , .		0
14	Polarization-Encoded Colocalization Microscopy at Cryogenic Temperatures. ACS Photonics, 2021, 8, 194-201.	3.2	7
15	Label-Free Confocal iSCAT Microscopy on Live Cells. , 2021, , .		2
16	High-Precision Protein-Tracking With Interferometric Scattering Microscopy. Frontiers in Cell and Developmental Biology, 2020, 8, 590158.	1.8	7
17	Quantum Metamaterials with Magnetic Response at Optical Frequencies. Physical Review Letters, 2020, 125, 063601.	2.9	27
18	Sub-nanometre resolution in single-molecule photoluminescence imaging. Nature Photonics, 2020, 14, 693-699.	15.6	152

#	Article	IF	CITATIONS
19	Ultrahigh-Speed Imaging of Rotational Diffusion on a Lipid Bilayer. Nano Letters, 2020, 20, 7213-7219.	4.5	21
20	Partial Cloaking of a Gold Particle by a Single Molecule. Physical Review Letters, 2020, 125, 103603.	2.9	12
21	Nanostructured Alkali-Metal Vapor Cells. Physical Review Applied, 2020, 14, .	1.5	23
22	Differential Diffusional Properties in Loose and Tight Docking Prior to Membrane Fusion. Biophysical Journal, 2020, 119, 2431-2439.	0.2	4
23	Nano-Optics in 2020 ± 20. Nano Letters, 2020, 20, 4721-4723.	4.5	17
24	Ensemble-Induced Strong Light-Matter Coupling of a Single Quantum Emitter. Physical Review Letters, 2020, 124, 113602.	2.9	40
25	Roadmap on quantum light spectroscopy. Journal of Physics B: Atomic, Molecular and Optical Physics, 2020, 53, 072002.	0.6	101
26	Molecule-photon interactions in phononic environments. Physical Review Research, 2020, 2, .	1.3	18
27	Kerker effect, superscattering, and scattering dark states in atomic antennas. Physical Review Research, 2020, 2, .	1.3	12
28	Point spread function in interferometric scattering microscopy (iSCAT). Part I: aberrations in defocusing and axial localization. Optics Express, 2020, 28, 25969.	1.7	47
29	A High Throughput Device for Label-Free Real-Time Study of Cellular Secretion with iSCAT Microscopy. , 2020, , .		Ο
30	Label-Free Live-Cell Imaging with Interferometric Scattering Microscopy: Confocal Imaging and High-Speed 3D Single Particle Tracking. , 2020, , .		0
31	Interferometric Scattering Microscopy: Seeing Single Nanoparticles and Molecules via Rayleigh Scattering. Nano Letters, 2019, 19, 4827-4835.	4.5	157
32	Coherent Coupling of Single Molecules to Microresonators. , 2019, , .		0
33	Coherent coupling of single molecules to on-chip ring resonators. New Journal of Physics, 2019, 21, 062002.	1.2	29
34	Coherent nonlinear optics of quantum emitters in nanophotonic waveguides. Nanophotonics, 2019, 8, 1641-1657.	2.9	40
35	Electrically Driven Single-Photon Superradiance from Molecular Chains in a Plasmonic Nanocavity. Physical Review Letters, 2019, 122, 233901.	2.9	62
36	Nanoprinting organic molecules at the quantum level. Nature Communications, 2019, 10, 1880.	5.8	33

#	Article	IF	CITATIONS
37	Interferometric scattering microscopy reveals microsecond nanoscopic protein motion on a live cell membrane. Nature Photonics, 2019, 13, 480-487.	15.6	125
38	Turning a molecule into a coherent two-level quantum system. Nature Physics, 2019, 15, 483-489.	6.5	118
39	Interferometric Scattering (iSCAT) Microscopy and Related Techniques. Biological and Medical Physics Series, 2019, , 25-65.	0.3	21
40	Organic Molecules Coming of Age in Quantum Optics. , 2019, , .		0
41	Turning an Organic Molecule into a Coherent Two-Level Quantum System using a Tunable Fabry-Perot Microcavity. , 2019, , .		0
42	Deterministic nanoprinting of single fluorescent molecules. , 2019, , .		0
43	Coherent Coupling of Single Molecules to a Chip-Based Optical Circuit. , 2019, , .		0
44	Coherent Interaction of Light with a Single Molecule and a Plasmonic Nanoparticle. , 2019, , .		0
45	Visualizing Single-Cell Secretion Dynamics with Single-Protein Sensitivity. Nano Letters, 2018, 18, 513-519.	4.5	50
46	Manipulation of Quenching in Nanoantenna–Emitter Systems Enabled by External Detuned Cavities: A Path to Enhance Strong-Coupling. ACS Photonics, 2018, 5, 456-461.	3.2	63
47	Organic molecules coming of age in quantum optics. EPJ Web of Conferences, 2018, 190, 02010.	0.1	0
48	Label-Free Imaging of Single Proteins Secreted from Living Cells via iSCAT Microscopy. Journal of Visualized Experiments, 2018, , .	0.2	15
49	High-Speed Microscopy of Diffusion in Pore-Spanning Lipid Membranes. Nano Letters, 2018, 18, 5262-5271.	4.5	21
50	Micropipette Geometry-Induced Electrostatic Trapping of Nanoparticles. Biophysical Journal, 2018, 114, 354a-355a.	0.2	0
51	Manipulation of Quenching and Strong Coupling via Detuned Nanoantenna-Microresonator Hybrid Systems. , 2018, , .		0
52	Cryogenic optical localization provides 3D protein structure data with Angstrom resolution. Nature Methods, 2017, 14, 141-144.	9.0	79
53	Strong plasmonic enhancement of biexciton emission: controlled coupling of a single quantum dot to a gold nanocone antenna. Scientific Reports, 2017, 7, 42307.	1.6	53
54	Experimental demonstration of a predictable single photon source with variable photon flux. Metrologia, 2017, 54, 218-223.	0.6	17

#	Article	IF	CITATIONS
55	A single molecule as a high-fidelity photon gun for producing intensity-squeezed light. Nature Photonics, 2017, 11, 58-62.	15.6	75
56	A Single-Emitter Gain Medium for Bright Coherent Radiation from a Plasmonic Nanoresonator. ACS Photonics, 2017, 4, 2738-2744.	3.2	17
57	Coherent Coupling of a Single Molecule to a Scanning Fabry-Perot Microcavity. Physical Review X, 2017, 7, .	2.8	49
58	Levitated Plasmonic Nanoantennas in an Aqueous Environment. ACS Nano, 2017, 11, 7674-7678.	7.3	9
59	Chip-Based All-Optical Control of Single Molecules Coherently Coupled to a Nanoguide. Nano Letters, 2017, 17, 4941-4945.	4.5	44
60	Efficient on-chip interface for many-body quantum optics with single molecules. , 2017, , .		0
61	Strong biexciton emission enhancement of a single quantum dot by a plasmonic nanocone antenna. , 2017, , .		0
62	Three-dimensional angstrom resolution in fluorescence microscopy: Insight into protein structure. , 2017, , .		0
63	Production of Isolated Giant Unilamellar Vesicles under High Salt Concentrations. Frontiers in Physiology, 2017, 8, 63.	1.3	110
64	Small slot waveguide rings for on-chip quantum optical circuits. Optics Express, 2017, 25, 5397.	1.7	9
65	Experimental realization of an absolute single-photon source based on a single nitrogen vacancy center in a nanodiamond. Optica, 2017, 4, 71.	4.8	47
66	Coherent coupling of a single molecule to a scanning Fabry-PÃ $@$ rot microcavity. , 2017, , .		0
67	Fluorescence-free Imaging and Tracking of Individual Secretory Proteins and Bioparticles. , 2017, , .		0
68	Intensity squeezed light from a single emitter. , 2017, , .		0
69	Compartmentalization and Transport in Synthetic Vesicles. Frontiers in Bioengineering and Biotechnology, 2016, 4, 19.	2.0	59
70	Visualization of lipids and proteins at high spatial and temporal resolution via interferometric scattering (iSCAT) microscopy. Journal Physics D: Applied Physics, 2016, 49, 274002.	1.3	58
71	High-Speed Single Particle Tracking on Model Lipid Membranes. Biophysical Journal, 2016, 110, 649a.	0.2	2
72	Few-photon coherent nonlinear optics with a single molecule. Nature Photonics, 2016, 10, 450-453.	15.6	69

#	Article	IF	CITATIONS
73	Polaritonic normal-mode splitting and light localization in a one-dimensional nanoguide. Physical Review A, 2016, 94, .	1.0	35
74	Visualization and ligand-induced modulation of dopamine receptor dimerization at the single molecule level. Scientific Reports, 2016, 6, 33233.	1.6	82
75	Spectroscopy and microscopy of single molecules in nanoscopic channels: spectral behavior vs. confinement depth. Physical Chemistry Chemical Physics, 2016, 18, 19588-19594.	1.3	18
76	Accurate High Speed Imaging of Single Protein Diffusion within the Live Cell Membrane. Biophysical Journal, 2016, 110, 16a.	0.2	0
77	Coherent Nonlinear Optics with a Single Molecule. , 2016, , .		0
78	When excitons and plasmons meet: Emerging function through synthesis and assembly. MRS Bulletin, 2015, 40, 768-776.	1.7	14
79	Enhancing the radiative emission rate of single molecules by a plasmonic nanoantenna weakly coupled with a dielectric substrate. Optics Express, 2015, 23, 32986.	1.7	4
80	Sensing Nanoparticles with a Cantilever-Based Scannable Optical Cavity of Low Finesse and Sub- <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:msup><mml:mi>li></mml:mi><mml:mn>3</mml:mn></mml:msup></mml:math> Volume. Physical Review Applied, 2015, 4, .	1.5	41
81	Interrogation and fabrication of nm scale hot alkali vapour cells. Journal of Physics: Conference Series, 2015, 635, 122006.	0.3	16
82	Quantum optics, molecular spectroscopy and low-temperature spectroscopy: general discussion. Faraday Discussions, 2015, 184, 275-303.	1.6	13
83	Plasmonics, Tracking and Manipulating, and Living Cells: general discussion. Faraday Discussions, 2015, 184, 451-473.	1.6	9
84	Spectroscopic detection of single Pr3+ ions on the 3H4â^'1D2 transition. New Journal of Physics, 2015, 17, 083018.	1.2	26
85	Fabrication and characterization of plasmonic nanocone antennas for strong spontaneous emission enhancement. Nanotechnology, 2015, 26, 404001.	1.3	23
86	Light microscopy: an ongoing contemporary revolution. Contemporary Physics, 2015, 56, 123-143.	0.8	82
87	Nonlinear Optics with Single Molecules. , 2015, , .		0
88	Superresolution techniques, biophysics with nanostructures, and fluorescence energy transfer: general discussion. Faraday Discussions, 2015, 184, 143-162.	1.6	1
89	Experimental realization of an optical antenna designed for collecting 99% of photons from a quantum emitter. Optica, 2014, 1, 203.	4.8	54
90	Conformational distribution of surface-adsorbed fibronectin molecules explored by single molecule localization microscopy. Biomaterials Science, 2014, 2, 883.	2.6	15

#	Article	IF	CITATIONS
91	Cryogenic Colocalization Microscopy for Nanometerâ€Distance Measurements. ChemPhysChem, 2014, 15, 763-770.	1.0	46
92	Scanning-aperture trapping and manipulation of single charged nanoparticles. Nature Communications, 2014, 5, 3380.	5.8	26
93	Label-free characterization of biomembranes: from structure to dynamics. Chemical Society Reviews, 2014, 43, 887-900.	18.7	72
94	Single-molecule optical spectroscopy. Chemical Society Reviews, 2014, 43, 973.	18.7	52
95	Coherent Interaction of Light and Single Molecules in a Dielectric Nanoguide. Physical Review Letters, 2014, 113, 213601.	2.9	72
96	Spectroscopic detection and state preparation of a single praseodymium ion in a crystal. Nature Communications, 2014, 5, 3627.	5.8	102
97	Direct optical sensing of single unlabelled proteins and super-resolution imaging of their binding sites. Nature Communications, 2014, 5, 4495.	5.8	245
98	Scanning-Aperture Electrostatic Trapping and Manipulation of Single Nanoparticles. Biophysical Journal, 2014, 106, 84a.	0.2	0
99	Tracking Single Particles on Supported Lipid Membranes: Multimobility Diffusion and Nanoscopic Confinement. Journal of Physical Chemistry B, 2014, 118, 1545-1554.	1.2	99
100	Label-Free Optical Detection and Super-Resolution Microscopy of Single Proteins. Biophysical Journal, 2014, 106, 19a.	0.2	0
101	Coherent Interaction of Light with a Metallic Structure Coupled to a Single Quantum Emitter: From Superabsorption to Cloaking. Physical Review Letters, 2013, 110, 153605.	2.9	72
102	Receptor Concentration and Diffusivity Control Multivalent Binding of Sv40 to Membrane Bilayers. PLoS Computational Biology, 2013, 9, e1003310.	1.5	44
103	Cryogenic localization of single molecules with angstrom precision. Proceedings of SPIE, 2013, , .	0.8	23
104	Measuring three-dimensional interaction potentials using optical interference. Optics Express, 2013, 21, 9377.	1.7	21
105	Coherent Interaction of a Single Emitter with a Metallic Structure. , 2013, , .		0
106	Spontaneous emission enhancement of a single molecule by a double-sphere nanoantenna across an interface. Optics Express, 2012, 20, 23331.	1.7	24
107	Metallodielectric optical antennas for ultrabright single-photon sources. , 2012, , .		0
108	Direct printing of nanostructures by electrostatic autofocussing of ink nanodroplets. Nature Communications, 2012, 3, 890.	5.8	319

#	Article	IF	CITATIONS
109	Single-Photon Spectroscopy of a Single Molecule. Physical Review Letters, 2012, 108, 093601.	2.9	88
110	Coherent spectroscopy in strongly confined optical fields. Physica B: Condensed Matter, 2012, 407, 4086-4092.	1.3	2
111	Einzelphotonen-Kommunikation zwischen einzelnen Molekülen. Physik in Unserer Zeit, 2012, 43, 166-167.	0.0	0
112	Metallodielectric Hybrid Antennas for Ultrastrong Enhancement of Spontaneous Emission. Physical Review Letters, 2012, 108, 233001.	2.9	102
113	Metallodielectric optical antennas for enhancing and directing spontaneous emission. , 2012, , .		0
114	Metallodielectric Hybrid Optical Antennas for Ultrabright and Directional Single Photon Emission. , 2012, , .		0
115	99% efficiency in collecting photons from a single emitter. Optics Letters, 2011, 36, 3545.	1.7	72
116	Single-molecule imaging by optical absorption. Nature Photonics, 2011, 5, 95-98.	15.6	174
117	A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency. Nature Photonics, 2011, 5, 166-169.	15.6	270
118	Optical antennas for modifying the radiation of single quantum emitters. , 2011, , .		0
119	Controlling the Phase of a Light Beam with a Single Molecule. Physical Review Letters, 2011, 107, 063001.	2.9	59
120	Phase control of a laser beam by a single molecule. , 2011, , .		0
121	Second harmonic generation from single nanoparticles. , 2011, , .		0
122	Ultrafast coupling of an emitter to a plasmonic antenna. , 2011, , .		0
123	A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency. , 2011, , .		4
124	Connecting two single molecules via single photons. , 2011, , .		0
125	Connecting two single molecules via single photons. , 2011, , .		0
126	Nanophotonics with Microsphere Resonators. , 2010, , 5–1-5–28.		1

#	Article	IF	CITATIONS
127	Geometry-induced electrostatic trapping of nanometric objects in a fluid. Nature, 2010, 467, 692-695.	13.7	207
128	Quantum Interference of Tunably Indistinguishable Photons from Remote Organic Molecules. , 2010, , .		0
129	A scanning microcavity for in situ control of single-molecule emission. Applied Physics Letters, 2010, 97, 021107.	1.5	49
130	Coherent nonlinear single-molecule microscopy. Physical Review A, 2010, 82, .	1.0	26
131	Fluorescence Enhancement with the Optical (Bi-) Conical Antenna. Journal of Physical Chemistry C, 2010, 114, 7372-7377.	1.5	59
132	Spontaneous emission of a nanoscopic emitter in a strongly scattering disordered medium. Optics Express, 2010, 18, 6360.	1.7	40
133	Near-infrared single-photons from aligned molecules in ultrathin crystalline films at room temperature. Optics Express, 2010, 18, 6577.	1.7	59
134	Nanofocusing radially-polarized beams for high-throughput funneling of optical energy to the near field. Optics Express, 2010, 18, 10878.	1.7	38
135	Efficient coupling of single photons to single plasmons. Optics Express, 2010, 18, 13829.	1.7	16
136	Quantum Interference of Tunably Indistinguishable Photons from Remote Organic Molecules. Physical Review Letters, 2010, 104, 123605.	2.9	139
137	Single-Molecule Sensitivity in Optical Absorption at Room Temperature. Journal of Physical Chemistry Letters, 2010, 1, 3323-3327.	2.1	132
138	A scanning fiber-based microcavity for controlling single molecule emission. , 2010, , .		0
139	Near Unity Conversion between Guided Photons and Surface Plasmon-Polaritons. , 2009, , .		0
140	Silicon photonic microcavities for optical switching. , 2009, , .		0
141	Cold, Copper, Silver and Aluminum Nanoantennas to Enhance Spontaneous Emission. Journal of Computational and Theoretical Nanoscience, 2009, 6, 2024-2030.	0.4	43
142	Perfect Reflection of Light by a Dipolar Emitter. , 2009, , .		0
143	Molecules as sources for indistinguishable single photons. Journal of Modern Optics, 2009, 56, 161-166.	0.6	13
144	A single-molecule optical transistor. Nature, 2009, 460, 76-80.	13.7	308

#	Article	IF	CITATIONS
145	High-speed nanoscopic tracking of the position and orientation of a single virus. Nature Methods, 2009, 6, 923-927.	9.0	328
146	Seeing diamond defects. Nature Photonics, 2009, 3, 133-134.	15.6	1
147	Lifetime-limited zero-phonon spectra of single molecules in methyl methacrylate. Chemical Physics Letters, 2009, 472, 44-47.	1.2	9
148	Coherent state preparation and observation of Rabi oscillations in a single molecule. Physical Review A, 2009, 79, .	1.0	53
149	Interaction of a nano-object with a high-Q microcavity: From frequency tuning to the Purcell effect. , 2009, , .		0
150	Circular Grating Resonators as Small Mode-Volume Microcavities for Switching. Optics Express, 2009, 17, 5953.	1.7	16
151	Imaging a Single Quantum Dot When It Is Dark. Nano Letters, 2009, 9, 926-929.	4.5	92
152	Coupling light to a localized surface plasmon-polariton. Proceedings of SPIE, 2009, , .	0.8	0
153	Highly Efficient Interfacing of Guided Plasmons and Photons in Nanowires. Nano Letters, 2009, 9, 3756-3761.	4.5	102
154	Anchoring, Sliding, And Rolling: Visualizing The Three-dimensional Nano-motion And Orientation Of A Single Virus As It Diffuses On A Flat Membrane. Biophysical Journal, 2009, 96, 557a.	0.2	0
155	Resolution and Enhancement in Nanoantenna-Based Fluorescence Microscopy. Nano Letters, 2009, 9, 4007-4011.	4.5	61
156	Spheroidal nanoparticles as nanoantennas for fluorescence enhancement. International Journal of Nanotechnology, 2009, 6, 902.	0.1	16
157	Control and imaging of single-molecule spectral dynamics using a nano-electrode. Molecular Physics, 2009, 107, 1975-1979.	0.8	7
158	Spectral dynamics and spatial localization of single molecules in a polymer. Molecular Physics, 2009, 107, 1897-1909.	0.8	6
159	Exploring the Limits of Single Emitter Detection in Fluorescence and Extinction. , 2009, , .		0
160	Imaging Plasmonic Nanoparticles with a Narrow-Band Single-Photon Source. , 2009, , .		0
161	Strong coupling of propagating laser light to single emitters: from absorption to stimulated emission. , 2009, , .		0
162	Amplification of a Laser Beam by a Single Molecule. , 2009, , .		0

10

#	Article	IF	CITATIONS
163	Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence. Nature Physics, 2008, 4, 60-66.	6.5	267
164	Modification of single molecule fluorescence close to a nanostructure: radiation pattern, spontaneous emission and quenching. Molecular Physics, 2008, 106, 893-908.	0.8	100
165	Coupling of plasmonic nanoparticles to their environments in the context of van der Waals–Casimir interactions. Physical Review B, 2008, 77, .	1.1	11
166	Plasmon spectra of nanospheres under a tightly focused beam. Journal of the Optical Society of America B: Optical Physics, 2008, 25, 651.	0.9	56
167	Exploring the limits of single emitter detection in fluorescence and extinction. Optics Express, 2008, 16, 17358.	1.7	14
168	Perfect Reflection of Light by an Oscillating Dipole. Physical Review Letters, 2008, 101, 180404.	2.9	173
169	Gold nanorods and nanospheroids for enhancing spontaneous emission. New Journal of Physics, 2008, 10, 105015.	1.2	114
170	Cavity (Q)ED with microsphere resonators. Proceedings of SPIE, 2008, , .	0.8	0
171	Strong light extinction by a single molecule. , 2007, , .		0
172	Quantum Optical Experiments with Single Molecules. Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS, 2007, , .	0.0	0
173	Normal mode splitting and purcell enhancement of local rayleigh scattering in a microsphere resonator. , 2007, , .		0
174	Engineering the decay rates and quantum efficiency of emitters coupled to gold nanoantennae. , 2007, , .		0
175	Strong Extinction of a Laser Beam by a Single Molecule. Physical Review Letters, 2007, 98, 033601.	2.9	113
176	Controlled Coupling of Counterpropagating Whispering-Gallery Modes by a Single Rayleigh Scatterer: A Classical Problem in a Quantum Optical Light. Physical Review Letters, 2007, 99, 173603.	2.9	254
177	Strong Light Extinction by a Single Molecule. , 2007, , .		0
178	Normal mode splitting induced by a local Rayleigh scatterer in a microsphere resonator: transition from weak to strong coupling. , 2007, , .		0
179	Finite-Difference Time-Domain Modeling of Decay Rates in the Near Field of Metal Nanostructures. Journal of Computational and Theoretical Nanoscience, 2007, 4, 635-643.	0.4	62
180	Interferometric detection and tracking of nanoparticles. Handai Nanophotonics, 2007, , 143-159.	0.0	4

#	Article	IF	CITATIONS
181	Engineering gold nano-antennae to enhance the emission of quantum emitters. , 2007, , .		7
182	Scanning near-field optical coherent spectroscopy of single molecules at 14K. Optics Letters, 2007, 32, 1420.	1.7	21
183	Design of plasmonic nanoantennae for enhancing spontaneous emission. Optics Letters, 2007, 32, 1623.	1.7	249
184	Realization of two Fourier-limited solid-state single-photon sources. Optics Express, 2007, 15, 15842.	1.7	31
185	Near-field imaging and frequency tuning of a high-Q photonic crystal membrane microcavity. Optics Express, 2007, 15, 17214.	1.7	37
186	Label-Free Optical Detection and Tracking of Single Virions Bound to Their Receptors in Supported Membrane Bilayers. Nano Letters, 2007, 7, 2263-2266.	4.5	67
187	Linear and nonâ€linear optical experiments based on macroporous silicon photonic crystals. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 3708-3726.	0.8	18
188	Nano-Optomechanical Characterization and Manipulation of Photonic Crystals. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13, 253-261.	1.9	13
189	Nanoparticle-Induced Fluorescence Lifetime Modification as Nanoscopic Ruler:Â Demonstration at the Single Molecule Level. Nano Letters, 2007, 7, 685-689.	4.5	147
190	Tailoring the transmission of liquid-core waveguides for wavelength filtering on a chip. , 2007, , .		4
191	Oxygen-dependent photochemistry of fluorescent dyes studied at the single molecule level. Molecular Physics, 2006, 104, 409-414.	0.8	62
192	Controlled Photon Transfer between Two Individual Nanoemitters via Shared High-QModes of a Microsphere Resonator. Nano Letters, 2006, 6, 1151-1154.	4.5	72
193	Measurement of the complex dielectric constant of a single gold nanoparticle. Optics Letters, 2006, 31, 2474.	1.7	89
194	Spontaneous emission rates of dipoles in photonic crystal membranes. Journal of the Optical Society of America B: Optical Physics, 2006, 23, 1196.	0.9	58
195	Interferometric optical detection and tracking of very small gold nanoparticles at a water-glass interface. Optics Express, 2006, 14, 405.	1.7	181
196	Optical Detection of Very Small Nonfluorescent Nanoparticles. Chimia, 2006, 60, 761-764.	0.3	7
197	Enhancement of Single-Molecule Fluorescence Using a Gold Nanoparticle as an Optical Nanoantenna. Physical Review Letters, 2006, 97, 017402.	2.9	1,355
198	Modification of single molecule fluorescence by a scanning probe. Applied Physics B: Lasers and Optics, 2006, 84, 211-217.	1.1	20

#	Article	IF	CITATIONS
199	Charcterization and Manipulation of Light Confinement in a Microcavity using Scanning Probe Technology. , 2006, , .		0
200	Near-field optics and control of photonic crystals. Photonics and Nanostructures - Fundamentals and Applications, 2005, 3, 63-74.	1.0	16
201	Optimization of prism coupling to high-Q modes in a microsphere resonator using a near-field probe. Optics Communications, 2005, 250, 428-433.	1.0	37
202	Near-field optical microscopy of light propagation through photonic crystal waveguide tapers. , 2005,		1
203	A "standing-wave meter―to measure dispersion and loss of photonic-crystal waveguides. Applied Physics Letters, 2005, 87, 261110.	1.5	8
204	Measuring the Quantum Efficiency of the Optical Emission of Single Radiating Dipoles Using a Scanning Mirror. Physical Review Letters, 2005, 95, 063003.	2.9	122
205	Optical Microscopy via Spectral Modifications of a Nanoantenna. Physical Review Letters, 2005, 95, 200801.	2.9	132
206	Controlling the Resonance of a Photonic Crystal Microcavity by a Near-Field Probe. Physical Review Letters, 2005, 95, 153904.	2.9	121
207	Spontaneous emission in the near field of two-dimensional photonic crystals. Optics Letters, 2005, 30, 3210.	1.7	37
208	Confocal microscopy and spectroscopy of nanocrystals on a high-Qmicrosphere resonator. Journal of Optics B: Quantum and Semiclassical Optics, 2004, 6, 154-158.	1.4	21
209	Highly Directional Emission from Photonic Crystal Waveguides of Subwavelength Width. Physical Review Letters, 2004, 92, 113903.	2.9	213
210	Aligned terrylene molecules in a spin-coated ultrathin crystalline film of p-terphenyl. Chemical Physics Letters, 2004, 387, 490-495.	1.2	73
211	Subwavelength emitters in the near-infrared based on mercury telluride nanocrystals. Applied Physics Letters, 2004, 84, 4732-4734.	1.5	30
212	Tomographic Plasmon Spectroscopy of a Single Gold Nanoparticle. Nano Letters, 2004, 4, 2309-2314.	4.5	107
213	Detection and Spectroscopy of Gold Nanoparticles Using Supercontinuum White Light Confocal Microscopy. Physical Review Letters, 2004, 93, 037401.	2.9	469
214	Near-field visualization of light confinement in a photonic crystal microresonator. Optics Letters, 2004, 29, 174.	1.7	70
215	Nanoparticles and microspheres: tools to study the interaction of quantum emitters via shared optical modes. , 2004, 5333, 174.		1
216	Spontaneous emission in nanoscopic dielectric particles. Optics Letters, 2003, 28, 1736.	1.7	34

#	Article	IF	CITATIONS
217	Single Molecules, Single Nanoparticles and Their Optical Interaction. AIP Conference Proceedings, 2003, , .	0.3	0
218	Controlled coupling of a single emitter to a single mode of a microsphere: where do we stand?. , 2003, , .		1
219	Spontaneous Emission of Europium Ions Embedded in Dielectric Nanospheres. Physical Review Letters, 2002, 89, 257403.	2.9	122
220	Nanometer Resolution and Coherent Optical Dipole Coupling of Two Individual Molecules. Science, 2002, 298, 385-389.	6.0	319
221	Influence of a sharp fiber tip on high-Q modes of a microsphere resonator. Optics Letters, 2002, 27, 80.	1.7	28
222	Beating the diffraction limit. Physics World, 2001, 14, 29-34.	0.0	6
223	Towards controlled coupling between a high-Q whispering-gallery mode and a single nanoparticle. Applied Physics B: Lasers and Optics, 2001, 73, 825-828.	1.1	27
224	Apertureless near-field optical microscopy via local second-harmonic generation. Journal of Microscopy, 2001, 202, 94-99.	0.8	39
225	A single gold particle as a probe for apertureless scanning near-field optical microscopy. Journal of Microscopy, 2001, 202, 72-76.	0.8	260
226	Diamond colour centres as a nanoscopic light source for scanning near-field optical microscopy. Journal of Microscopy, 2001, 202, 2-6.	0.8	122
227	Mapping and manipulating whispering gallery modes of a microsphere resonator with a near-field probe. Journal of Microscopy, 2001, 202, 117-121.	0.8	29
228	Results and Thoughts on Optical Microscopy Using a Single-molecule Probe. Single Molecules, 2001, 2, 277-281.	1.7	6
229	A model system for two-dimensional and three-dimensional photonic crystals: macroporous silicon. Journal of Optics, 2001, 3, S121-S132.	1.5	57
230	Direct spectroscopy of a deep two-dimensional photonic crystal microresonator. Physical Review B, 2001, 64, .	1.1	40
231	Apertureless scanning near-field second-harmonic microscopy. Optics Communications, 2000, 178, 245-249.	1.0	60
232	Transmission of a microcavity structure in a two-dimensional photonic crystal based on macroporous silicon. Materials Science in Semiconductor Processing, 2000, 3, 487-491.	1.9	23
233	Optical microscopy using a single-molecule light source. Nature, 2000, 405, 325-328.	13.7	270
234	Multifunctional AFM/SNOM cantilever probes: Fabrication and measurements. Microelectronic Engineering, 2000, 53, 183-186.	1.1	14

#	Article	IF	CITATIONS
235	High-contrast topography-free sample for near-field optical microscopy. Applied Physics Letters, 2000, 76, 1206-1208.	1.5	16
236	Second-harmonic generation from individual surface defects under local excitation. Physical Review B, 2000, 61, 4545-4548.	1.1	67
237	Prospects of apertureless SNOM with active probes. Journal of Optics, 1999, 1, 523-530.	1.5	24
238	A novel fabrication method for fluorescence-based apertureless scanning near-field optical microscope probes. Journal of Microscopy, 1999, 194, 340-343.	0.8	3
239	A single molecule as a probe of optical intensity distribution. Optics Letters, 1999, 24, 581.	1.7	25
240	Single-molecule spectroscopy near structured dielectrics. Optics Communications, 1998, 158, 250-262.	1.0	58
241	Reflection scanning near-field optical microscopy with uncoated fiber tips: How good is the resolution really?. Journal of Applied Physics, 1997, 81, 2499-2503.	1.1	79
242	Lithography using nano-lens arrays made of light. Journal of Modern Optics, 1997, 44, 1883-1898.	0.6	15
243	Mlcrolasers based on silica microspheres. Annales Des Telecommunications/Annals of Telecommunications, 1997, 52, 557.	1.6	13
244	Characterizing whispering-gallery modes in microspheres by direct observation of the optical standing-wave pattern in the near field. Optics Letters, 1996, 21, 698.	1.7	62
245	Very low threshold whispering-gallery-mode microsphere laser. Physical Review A, 1996, 54, R1777-R1780.	1.0	425
246	Spectroscopy of atoms confined to the single node of a standing wave in a parallel-plate cavity. Physical Review A, 1996, 53, 1919-1922.	1.0	28
247	Eroded monomode optical fiber for whispering-gallery mode excitation in fused-silica microspheres. Optics Letters, 1995, 20, 813.	1.7	111
248	Mapping whispering-gallery modes in microspheres with a near-field probe. Optics Letters, 1995, 20, 1515.	1.7	115
249	Splitting of high-Q Mie modes induced by light backscattering in silica microspheres. Optics Letters, 1995, 20, 1835.	1.7	280
250	Quantized atom-field force at the surface of a microsphere. Optics Letters, 1994, 19, 1651.	1.7	61
251	Measurement of the Casimir-Polder force. Physical Review Letters, 1993, 70, 560-563.	2.9	370
252	Observation and measurement of the Casimir-Polder force. AIP Conference Proceedings, 1993, , .	0.3	0

#	Article	IF	CITATIONS
253	Direct measurement of the van der Waals interaction between an atom and its images in a micron-sized cavity. Physical Review Letters, 1992, 68, 3432-3435.	2.9	175
254	Cavity QED level shifts of simple atoms. Physical Review A, 1991, 43, 398-403.	1.0	89
255	External-cavity frequency-stabilization of visible and infrared semiconductor lasers for high resolution spectroscopy. Optics Communications, 1991, 85, 355-359.	1.0	64
256	Towards a novel microsphere laser. , 0, , .		0
257	Photonic bandgap waveguide structures. , 0, , .		Ο
258	Metal nanoparticles in strongly confined beams: transmission, reflection and absorption. Journal of the European Optical Society-Rapid Publications, 0, 4, .	0.9	16
259	Deciphering a hexameric protein complex with Angstrom optical resolution. ELife, 0, 11, .	2.8	5