
Young Duck Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8423119/publications.pdf Version: 2024-02-01

YOUNG DUCK KIM

#	Article	IF	CITATIONS
1	Electroluminescence of atoms in a graphene nanogap. Science Advances, 2022, 8, eabj1742.	10.3	1
2	Triaxially strained suspended graphene for large-area pseudo-magnetic fields. Optics Letters, 2022, 47, 2174.	3.3	7
3	In-plane optical and electrical anisotropy in low-symmetry layered GeS microribbons. NPG Asia Materials, 2022, 14, .	7.9	5
4	Topography dependence of conductivity in electrostrictive germanium sulfide nanoribbons. 2D Materials, 2022, 9, 045008.	4.4	3
5	Néel-type skyrmions and their current-induced motion in van der Waals ferromagnet-based heterostructures. Physical Review B, 2021, 103, .	3.2	110
6	Stabilization of Chemical-Vapor-Deposition-Grown WS2 Monolayers at Elevated Temperature with Hexagonal Boron Nitride Encapsulation. ACS Applied Materials & Interfaces, 2021, 13, 31271-31278.	8.0	4
7	Remote modulation doping in van der Waals heterostructure transistors. Nature Electronics, 2021, 4, 664-670.	26.0	58
8	Modulation of optical and electrical properties in hexagonal boron nitride by defects induced via oxygen plasma treatment. 2D Materials, 2021, 8, 045041.	4.4	9
9	Dual-functional quantum-dots light emitting diodes based on solution processable vanadium oxide hole injection layer. Scientific Reports, 2021, 11, 1700.	3.3	12
10	Electrical Modulation of Exciton Complexes in Light-Emitting Tunnel Transistors of a van der Waals Heterostructure. ACS Photonics, 2021, 8, 3455-3461.	6.6	3
11	Directional ultrafast charge transfer in a WSe ₂ /MoSe ₂ heterostructure selectively probed by time-resolved SHG imaging microscopy. Nanoscale Horizons, 2020, 5, 1603-1609.	8.0	14
12	Bandgap engineering of two-dimensional semiconductor materials. Npj 2D Materials and Applications, 2020, 4, .	7.9	528
13	Multioperationâ€Mode Lightâ€Emitting Fieldâ€Effect Transistors Based on van der Waals Heterostructure. Advanced Materials, 2020, 32, e2003567.	21.0	12
14	Strong Metasurface–Josephson Plasma Resonance Coupling in Superconducting La 2â^' x Sr x CuO 4. Advanced Optical Materials, 2019, 7, 1900712.	7.3	9
15	High-performance monolayer MoS2 field-effect transistor with large-scale nitrogen-doped graphene electrodes for Ohmic contact. Applied Physics Letters, 2019, 115, .	3.3	27
16	Nanomachining-enabled strain manipulation of magnetic anisotropy in the free-standing GaMnAs nanostructures. Scientific Reports, 2019, 9, 13633.	3.3	2
17	Thermal radiation control from hot graphene electrons coupled to a photonic crystal nanocavity. Nature Communications, 2019, 10, 109.	12.8	79
18	Near ultraviolet light emission in hexagonal boron nitride based van der Waals heterostructures. , 2019, , .		1

YOUNG DUCK КІМ

#	Article	IF	CITATIONS
19	Graphene-based plasmonic waveguide devices for electronic-photonic integrated circuit. Optics and Laser Technology, 2018, 106, 76-86.	4.6	20
20	Ultrafast Graphene Light Emitters. Nano Letters, 2018, 18, 934-940.	9.1	109
21	The Impact of the Substrate Material on the Optical Properties of 2D WSe2 Monolayers. Semiconductors, 2018, 52, 565-571.	0.5	14
22	The influence of the environment on monolayer tungsten diselenide photoluminescence. Nano Structures Nano Objects, 2018, 15, 84-97.	3.5	21
23	Impact ionization by hot carriers in a black phosphorus field effect transistor. Nature Communications, 2018, 9, 3414.	12.8	41
24	The influence of hBN on the pump-dependent time-evolution of monolayer photoluminescence in WSe2. , 2018, , .		0
25	Exciton Dynamics in WSe2 Monolayers for Different Stacking Schemes Involving h-BN. , 2018, , .		0
26	Density-dependent excitonic properties and dynamics in 2D heterostructures consisting of boron nitride and monolayer or few-layer tungsten diselenide. , 2018, , .		0
27	Grapheneâ€Assisted Antioxidation of Tungsten Disulfide Monolayers: Substrate and Electricâ€Field Effect. Advanced Materials, 2017, 29, 1603898.	21.0	47
28	Influence of the substrate material on the optical properties of tungsten diselenide monolayers. 2D Materials, 2017, 4, 025045.	4.4	80
29	A large-scale NEMS light-emitting array based on CVD graphene (Conference Presentation). , 2017, , .		1
30	Universality of periodicity as revealed from interlayer-mediated cracks. Scientific Reports, 2017, 7, 43400.	3.3	8
31	Interfacial Charge Transfer Circumventing Momentum Mismatch at Two-Dimensional van der Waals Heterojunctions. Nano Letters, 2017, 17, 3591-3598.	9.1	172
32	Tungsten Disulfide Monolayers: Grapheneâ€Assisted Antioxidation of Tungsten Disulfide Monolayers: Substrate and Electricâ€Field Effect (Adv. Mater. 18/2017). Advanced Materials, 2017, 29, .	21.0	0
33	Electrically-driven GHz range ultrafast graphene light emitter (Conference Presentation). , 2017, , .		0
34	Screen printing of 2D semiconductors. Nature, 2017, 544, 167-168.	27.8	73
35	High Electric Field Carrier Transport and Power Dissipation in Multilayer Black Phosphorus Field Effect Transistor with Dielectric Engineering. Advanced Functional Materials, 2017, 27, 1604025.	14.9	47
36	Low-Temperature Ohmic Contact to Monolayer MoS ₂ by van der Waals Bonded Co/ <i>h</i> -BN Electrodes. Nano Letters, 2017, 17, 4781-4786.	9.1	233

YOUNG DUCK КІМ

#	Article	IF	CITATIONS
37	Surface buckling of black phosphorus: Determination, origin, and influence on electronic structure. Physical Review Materials, 2017, 1, .	2.4	13
38	The influence of the substrate material on the optical properties of tungsten diselendide monolayers. , 2017, , .		0
39	Light Emission from Graphene. , 2016, , .		1
40	Transitionâ€Metal Substitution Doping in Synthetic Atomically Thin Semiconductors. Advanced Materials, 2016, 28, 9735-9743.	21.0	208
41	Gateâ€Tunable Hole and Electron Carrier Transport in Atomically Thin Dualâ€Channel WSe ₂ /MoS ₂ Heterostructure for Ambipolar Fieldâ€Effect Transistors. Advanced Materials, 2016, 28, 9519-9525.	21.0	70
42	Nature of the quantum metal in a two-dimensional crystalline superconductor. Nature Physics, 2016, 12, 208-212.	16.7	228
43	Cavity-Enhanced Narrowband Radiation of an Electrically Driven Graphene Light Emitter. , 2016, , .		Ο
44	Bright visible light emission from graphene. Nature Nanotechnology, 2015, 10, 676-681.	31.5	284
45	Highly Stable, Dual-Gated MoS ₂ Transistors Encapsulated by Hexagonal Boron Nitride with Gate-Controllable Contact, Resistance, and Threshold Voltage. ACS Nano, 2015, 9, 7019-7026.	14.6	331
46	Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nature Nanotechnology, 2015, 10, 534-540.	31.5	1,099
47	Structure and control of charge density waves in two-dimensional 1T-TaS ₂ . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15054-15059.	7.1	205
48	Valley Splitting and Polarization by the Zeeman Effect in Monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>MoSe</mml:mi></mml:mrow><ml:mrow>< Physical Review Letters, 2014, 113, 266804.</ml:mrow></mml:msub></mml:mrow></mml:math 	mml:mn>2	2 <del 3951:mn><
49	Methane as an effective hydrogen source for single-layer graphene synthesis on Cu foil by plasma enhanced chemical vapor deposition. Nanoscale, 2013, 5, 1221.	5.6	104
50	The Role of External Defects in Chemical Sensing of Graphene Field-Effect Transistors. Nano Letters, 2013, 13, 1962-1968.	9.1	125
51	Focused-Laser-Enabled p–n Junctions in Graphene Field-Effect Transistors. ACS Nano, 2013, 7, 5850-5857.	14.6	76
52	Effects of tensile stress on the resonant response of Al thin-film and Al-CNT nanolaminate nanomechanical beam resonators. Current Applied Physics, 2011, 11, 746-749.	2.4	6
53	Determination of Mechanical Properties of Single-Crystal CdS Nanowires from Dynamic Flexural Measurements of Nanowire Mechanical Resonators. Applied Physics Express, 2011, 4, 065004.	2.4	7
54	Characterization of Thermo-Mechanical Properties of Carbon-Based Low-Dimensional Material/Metallic Thin-Film Composites from NEMS Structures. ECS Transactions, 2010, 33, 263-268.	0.5	0

#	Article	IF	CITATIONS
55	High-frequency micromechanical resonators from aluminium–carbon nanotube nanolaminates. Nature Materials, 2008, 7, 459-463.	27.5	46
56	Fabrication of CNT/metal torsional resonator structures on GaAs. Materials Research Society Symposia Proceedings, 2007, 1018, 1.	0.1	0