Andrew Mark Thompson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8423051/publications.pdf

Version: 2024-02-01

42 papers 1,917 citations

236925 25 h-index 289244 40 g-index

45 all docs

45 docs citations

45 times ranked

1925 citing authors

#	Article	IF	CITATIONS
1	Tuberculosis Drug Discovery: Challenges and New Horizons. Journal of Medicinal Chemistry, 2022, 65, 7489-7531.	6.4	59
2	Heteroaryl ether analogues of an antileishmanial 7-substituted 2-nitroimidazooxazine lead afford attenuated hERG risk: InÂvitro and inÂvivo appraisal. European Journal of Medicinal Chemistry, 2021, 209, 112914.	5 . 5	17
3	Novel Linker Variants of Antileishmanial/Antitubercular 7-Substituted 2-Nitroimidazooxazines Offer Enhanced Solubility. ACS Medicinal Chemistry Letters, 2021, 12, 275-281.	2.8	9
4	Re-evaluating pretomanid analogues for Chagas disease: Hit-to-lead studies reveal both inÂvitro and inÂvivo trypanocidal efficacy. European Journal of Medicinal Chemistry, 2020, 207, 112849.	5.5	13
5	Inhibitors of enzymes in the electron transport chain of Mycobacterium tuberculosis. Annual Reports in Medicinal Chemistry, 2019, 52, 97-130.	0.9	4
6	Development of $(6 < i > R < i >)$ -2-Nitro-6-[4-(trifluoromethoxy)phenoxy]-6,7-dihydro-5 $< i > H < i >$ -imidazo[2,1- $< i > b < i >]$ [1,3]oxazine (DNDI-8219): A New Lead for Visceral Leishmaniasis. Journal of Medicinal Chemistry, 2018, 61, 2329-2352.	6.4	42
7	Assessment of a pretomanid analogue library for African trypanosomiasis: Hit-to-lead studies on 6-substituted 2-nitro-6,7-dihydro-5H-imidazo[2,1-b][1,3]thiazine 8-oxides. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 207-213.	2.2	22
8	7-Substituted 2-Nitro-5,6-dihydroimidazo[2,1- <i>b</i>)[1,3]oxazines: Novel Antitubercular Agents Lead to a New Preclinical Candidate for Visceral Leishmaniasis. Journal of Medicinal Chemistry, 2017, 60, 4212-4233.	6.4	47
9	6-Nitro-2,3-dihydroimidazo[2,1-b][1,3]thiazoles: Facile synthesis and comparative appraisal against tuberculosis and neglected tropical diseases. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 2583-2589.	2.2	26
10	Development of a Scalable Process for the Synthesis of DNDI-VL-2098: A Potential Preclinical Drug Candidate for the Treatment of Visceral Leishmaniasis. Organic Process Research and Development, 2017, 21, 52-59.	2.7	15
11	Antitubercular Nitroimidazoles Revisited: Synthesis and Activity of the Authentic 3-Nitro Isomer of Pretomanid. ACS Medicinal Chemistry Letters, 2017, 8, 1275-1280.	2.8	36
12	Tyrosine Kinase Inhibitors. 20. Optimization of Substituted Quinazoline and Pyrido[3,4- <i>d</i>) pyrimidine Derivatives as Orally Active, Irreversible Inhibitors of the Epidermal Growth Factor Receptor Family. Journal of Medicinal Chemistry, 2016, 59, 8103-8124.	6.4	52
13	Repositioning Antitubercular 6-Nitro-2,3-dihydroimidazo[2,1- <i>b</i>][1,3]oxazoles for Neglected Tropical Diseases: Structure–Activity Studies on a Preclinical Candidate for Visceral Leishmaniasis. Journal of Medicinal Chemistry, 2016, 59, 2530-2550.	6.4	46
14	Synthesis and Structure–Activity Relationships for Extended Side Chain Analogues of the Antitubercular Drug (6 <i>>S</i>)-2-Nitro-6-{[4-(trifluoromethoxy)benzyl]oxy}-6,7-dihydro-5 <i>H</i> -imidazo[2,1- <i>b</i>][1,3]oxazine (PA-824). Journal of Medicinal Chemistry, 2015, 58, 3036-3059.	6.4	33
15	Biarylmethoxy 2-nitroimidazooxazine antituberculosis agents: Effects of proximal ring substitution and linker reversal on metabolism and efficacy. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 3804-3809.	2.2	12
16	A Study Investigating a Possible Link Between Lens Protein in the Vitreous Fluid of Eyes After Uncomplicated Cataract Surgery and Chronic Cystoid Macular Edema. Asia-Pacific Journal of Ophthalmology, 2014, 3, 194-197.	2.5	0
17	Structure–Activity Relationships for Amide-, Carbamate-, And Urea-Linked Analogues of the Tuberculosis Drug (6 <i>>S</i>)-2-Nitro-6-{[4-(trifluoromethoxy)benzyl]oxy}-6,7-dihydro-5 <i>H</i> -imidazo[2,1- <i>b</i>][1,3]oxazine (PA-824). Journal of Medicinal Chemistry, 2012, 55, 312-326.	6.4	53
18	Synthesis and Structure–Activity Relationships of Varied Ether Linker Analogues of the Antitubercular Drug	6.4	66

#	Article	IF	Citations
19	Synthesis and Structureâ-dactivity Relationships of Antitubercular 2-Nitroimidazooxazines Bearing Heterocyclic Side Chains. Journal of Medicinal Chemistry, 2010, 53, 855-866.	6.4	81
20	Synthesis and Structureâ 'Activity Relationships of Aza- and Diazabiphenyl Analogues of the Antitubercular Drug $(6 < i > S < i >) -2 -Nitro -6 -{[4-(trifluoromethoxy)benzyl]oxy} -6,7-dihydro -5 < i > H < i > -imidazo[2,1- b < i >][1,3]oxazine (PA-824). Journal of Medicinal Chemistry, 2010, 53, 8421-8439.$	6.4	80
21	Synthesis and Structureâ ⁻ 'Activity Studies of Biphenyl Analogues of the Tuberculosis Drug (6 <i>S</i>)-2-Nitro-6-{[4-(trifluoromethoxy)benzyl]oxy}-6,7-dihydro-5 <i>H</i> -imidazo[2,1- <i>b</i>][1,3]oxazine (PA-824). Journal of Medicinal Chemistry, 2010, 53, 282-294.	6.4	104
22	Synthesis, Reduction Potentials, and Antitubercular Activity of Ring A/B Analogues of the Bioreductive Drug (6 <i>S</i>)-2-Nitro-6-{[4-(trifluoromethoxy)benzyl]oxy}-6,7-dihydro-5 <i>H</i> -imidazo[2,1- <i>b</i>][1,3]oxazine (PA-824). Journal of Medicinal Chemistry, 2009, 52, 637-645.	6.4	88
23	Synthesis and structure–activity relationships of N-6 substituted analogues of 9-hydroxy-4-phenylpyrrolo[3,4-c]carbazole-1,3(2H,6H)-diones as inhibitors of Wee1 and Chk1 checkpoint kinases. European Journal of Medicinal Chemistry, 2008, 43, 1276-1296.	5.5	26
24	Synthesis and structure–activity relationships of soluble 8-substituted 4-(2-chlorophenyl)-9-hydroxypyrrolo[3,4-c]carbazole-1,3(2H,6H)-diones as inhibitors of the Wee1 and Chk1 checkpoint kinases. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 929-933.	2.2	27
25	4-Phenylpyrrolo[3,4-c]carbazole-1,3(2H,6H)-dione Inhibitors of the Checkpoint Kinase Wee1. Structureâ 'Activity Relationships for Chromophore Modification and Phenyl Ring Substitution. Journal of Medicinal Chemistry, 2006, 49, 4896-4911.	6.4	96
26	Synthesis and Structureâ^'Activity Relationships of Soluble 7-Substituted 3-(3,5-Dimethoxyphenyl)-1,6-naphthyridin-2-amines and Related Ureas as Dual Inhibitors of the Fibroblast Growth Factor Receptor-1 and Vascular Endothelial Growth Factor Receptor-2 Tyrosine Kinases. Journal of Medicinal Chemistry, 2005, 48, 4628-4653.	6.4	47
27	Synthesis of 7-substituted 3-aryl-1,6-naphthyridin-2-amines and 7-substituted 3-aryl-1,6-naphthyridin-2(1H )-ones via diazotization of 3-aryl-1,6-naphthyridine-2,7-diamines. Journal of the Chemical Society, Perkin Transactions 1, 2000, , 1843-1852.	1.3	7
28	Synthesis and Structureâ^'Activity Relationships of 7-Substituted 3-(2,6-Dichlorophenyl)-1,6-naphthyridin-2(1H)-ones as Selective Inhibitors of pp60c-src. Journal of Medicinal Chemistry, 2000, 43, 3134-3147.	6.4	36
29	3-(3,5-Dimethoxyphenyl)-1,6-naphthyridine-2,7-diamines and Related 2-Urea Derivatives Are Potent and Selective Inhibitors of the FGF Receptor-1 Tyrosine Kinase. Journal of Medicinal Chemistry, 2000, 43, 4200-4211.	6.4	44
30	Tyrosine Kinase Inhibitors. 13. Structureâ^'Activity Relationships for Soluble 7-Substituted 4-[(3-Bromophenyl)amino]pyrido[4,3-d]pyrimidines Designed as Inhibitors of the Tyrosine Kinase Activity of the Epidermal Growth Factor Receptor. Journal of Medicinal Chemistry, 1997, 40, 3915-3925.	6.4	54
31	Tyrosine Kinase Inhibitors. 6. Structureâ^'Activity Relationships amongN- and 3-Substituted 2,2â€~-Diselenobis(1H-indoles) for Inhibition of Protein Tyrosine Kinases and Comparativein Vitroandin VivoStudies against Selected Sulfur Congeners. Journal of Medicinal Chemistry, 1997, 40, 413-426.	6.4	62
32	Tyrosine Kinase Inhibitors. 10. Isomeric 4-[(3-Bromophenyl)amino]pyrido[d]- pyrimidines Are Potent ATP Binding Site Inhibitors of the Tyrosine Kinase Function of the Epidermal Growth Factor Receptor. Journal of Medicinal Chemistry, 1996, 39, 1823-1835.	6.4	133
33	Tyrosine kinase inhibitors. 7. 7-amino-4-(phenylamino)- and 7-amino-4-[(phenylmethyl)amino]pyrido[4,3-d]pyrimidines: a new class of inhibitors of the tyrosine kinase activity of the epidermal growth factor receptor. Journal of Medicinal Chemistry, 1995, 38, 3780-3788.	6.4	131
34	Tyrosine Kinase Inhibitors. 4. Structure-Activity Relationships among N- and 3-Substituted 2,2'-Dithiobis(1H-indoles) for in vitro Inhibition of Receptor and Nonreceptor Protein Tyrosine Kinases. Journal of Medicinal Chemistry, 1995, 38, 58-67.	6.4	70
35	Chemistry of the mycalamides, antiviral and antitumour compounds from a marine sponge. Part 5. Acid-catalysed hydrolysis and acetal exchange, double bond additions and oxidation reactions. Journal of the Chemical Society Perkin Transactions 1, 1995, , 1233.	0.9	16
36	Tyrosine kinase inhibitors. 2. Synthesis of 2,2'-dithiobis(1H-indole-3-alkanamides) and investigation of their inhibitory activity against epidermal growth factor receptor and pp60v-src protein tyrosine kinases. Journal of Medicinal Chemistry, 1994, 37, 598-609.	6.4	26

#	Article	IF	CITATIONS
37	Chemistry of the mycalamides, antiviral and antitumour compounds from a marine sponge. Part 4. Reactions of mycalamide A and alkyl derivatives with basic nucleophiles. Journal of the Chemical Society Perkin Transactions 1, 1994, , 1025.	0.9	18
38	Facile dimerisation of 3-benzylideneindoline-2-thiones. Journal of the Chemical Society Perkin Transactions 1, 1993, , 1835.	0.9	11
39	Tyrosine kinase inhibitors. 1. Structure-activity relationships for inhibition of epidermal growth factor receptor tyrosine kinase activity by 2,3-dihydro-2-thioxo-1H-indole-3-alkanoic acids and 2,2'-dithiobis(1H-indole-3-alkanoic acids). Journal of Medicinal Chemistry, 1993, 36, 2459-2469.	6.4	34
40	Chemistry of the mycalamides, antiviral and antitumour compounds from a marine sponge. Part 3. Acyl, alkyl and silyl derivatives. Journal of the Chemical Society Perkin Transactions 1, 1992, , 1335.	0.9	23
41	Antiviral and antitumor agents from a New Zealand sponge, Mycale sp. 2. Structures and solution conformations of mycalamides A and B. Journal of Organic Chemistry, 1990, 55, 223-227.	3.2	150
42	The kinetics of the reaction between trans- dichlorobis(1,2-diaminoethane)cobalt(III) perchlorate and monoamines in dimethylformamideâ€"I. Spectrophotometric and spectropolarimetric measurements. Polyhedron, 1988, 7, 1159-1167.	2.2	0