Sanjeevi Sivasankar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8422671/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cadherins can dimerize via asymmetric interactions. FEBS Letters, 2022, , .	1.3	2
2	Robust scan synchronized force-fluorescence imaging. Ultramicroscopy, 2021, 221, 113165.	0.8	1
3	Inside-out regulation of E-cadherin conformation and adhesion. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	26
4	Mapping transmembrane binding partners for E-cadherin ectodomains. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31157-31165.	3.3	31
5	Pitching Single-Focus Confocal Data Analysis One Photon at a Time with Bayesian Nonparametrics. Physical Review X, 2020, 10, .	2.8	21
6	Adaptive atomic force microscope. , 2020, , .		1
7	An alternative framework for fluorescence correlation spectroscopy. Nature Communications, 2019, 10, 3662.	5.8	53
8	Single-molecule studies of classical and desmosomal cadherin adhesion. Current Opinion in Biomedical Engineering, 2019, 12, 43-50.	1.8	4
9	Improving estimation of kinetic parameters in dynamic force spectroscopy using cluster analysis. Journal of Chemical Physics, 2018, 148, 123301.	1.2	7
10	Method for high frequency tracking and sub-nm sample stabilization in single molecule fluorescence microscopy. Scientific Reports, 2018, 8, 13912.	1.6	9
11	E-cadherin binds to desmoglein to facilitate desmosome assembly. ELife, 2018, 7, .	2.8	67
12	Biophysical basis of cadherin mediated cell-cell adhesion. Experimental Cell Research, 2017, 358, 10-13.	1.2	44
13	Minimizing open-loop piezoactuator nonlinearity artifacts in atomic force microscope measurements. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2017, 35, 053201.	0.6	2
14	Copper-induced structural conversion templates prion protein oligomerization and neurotoxicity. Science Advances, 2016, 2, e1600014.	4.7	48
15	Molecular determinants of cadherin ideal bond formation: Conformation-dependent unbinding on a multidimensional landscape. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5711-20.	3.3	32
16	Biomechanics of cell adhesion: how force regulates the lifetime of adhesive bonds at the single molecule level. Physical Chemistry Chemical Physics, 2014, 16, 2211.	1.3	69
17	Different roles of cadherins in the assembly and structural integrity of the desmosome complex. Journal of Cell Science, 2014, 127, 2339-50.	1.2	56
18	Resolving the molecular mechanism of cadherin catch bond formation. Nature Communications, 2014, 5, 3941.	5.8	111

SANJEEVI SIVASANKAR

#	Article	IF	CITATIONS
19	Tuning the Kinetics of Cadherin Adhesion. Journal of Investigative Dermatology, 2013, 133, 2318-2323.	0.3	22
20	Cadherin recognition and adhesion. Current Opinion in Cell Biology, 2012, 24, 620-627.	2.6	67
21	Ideal, catch, and slip bonds in cadherin adhesion. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 18815-18820.	3.3	236
22	Biophysics of Cadherin Adhesion. Sub-Cellular Biochemistry, 2012, 60, 63-88.	1.0	14
23	Fluorescence Axial Localization with Nanometer Accuracy and Precision. Nano Letters, 2012, 12, 3731-3735.	4.5	14
24	Cross-linking of a charged polysaccharide using polyions as electrostatic staples. Soft Matter, 2011, 7, 2348.	1.2	5
25	Flow triggered by instabilities at the contact line of a drop containing nanoparticles. Soft Matter, 2011, 7, 5116.	1.2	11
26	Spatially Indirect Emission in a Luminescent Nanocrystal Molecule. Nano Letters, 2011, 11, 2358-2362.	4.5	57
27	Resolving cadherin interactions and binding cooperativity at the single-molecule level. Proceedings of the United States of America, 2009, 106, 109-114.	3.3	183
28	Characterizing the Initial Encounter Complex in Cadherin Adhesion. Structure, 2009, 17, 1075-1081.	1.6	91
29	Strain-Dependent Photoluminescence Behavior of CdSe/CdS Nanocrystals with Spherical, Linear, and Branched Topologies. Nano Letters, 2009, 9, 3544-3549.	4.5	124
30	Nanoparticle-Mediated Nonfluorescent Bonding of Microspheres to Atomic Force Microscope Cantilevers and Imaging Fluorescence from Bonded Cantilevers with Single Molecule Sensitivity. Nano Letters, 2009, 9, 2120-2124.	4.5	3
31	Optical Bonding Using Silica Nanoparticle Solâ^'Gel Chemistry. Nano Letters, 2007, 7, 3031-3034.	4.5	21
32	Direct Measurements of Multiple Adhesive Alignments and Unbinding Trajectories between Cadherin Extracellular Domains. Biophysical Journal, 2001, 80, 1758-1768.	0.2	134
33	Mechanism of homophilic cadherin adhesion. Current Opinion in Cell Biology, 2000, 12, 587-592.	2.6	76
34	Direct molecular force measurements of multiple adhesive interactions between cadherin ectodomains. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 11820-11824.	3.3	160
35	Forces controlling protein interactions: theory and experiment. Colloids and Surfaces B: Biointerfaces, 1999, 14, 83-97.	2.5	62
36	Direct molecular level measurements of the electrostatic properties of a protein surface. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 12961-12966.	3.3	89