
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8422522/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Superelastic and responsive anisotropic silica nanofiber/polyvinylpyrrolidone/MXene hybrid aerogels for efficient thermal insulation and overheating alarm applications. Composites Science and Technology, 2022, 225, 109484.	7.8	19
2	Super-Hygroscopic Calcium Chloride/Graphene Oxide/Poly(N-isopropylacrylamide) Gels for Spontaneous Harvesting of Atmospheric Water and Solar-Driven Water Release. ACS Applied Materials & Interfaces, 2022, 14, 33881-33891.	8.0	24
3	Antifreezing and stretchable all-gel-state supercapacitor with enhanced capacitances established by graphene/PEDOT-polyvinyl alcohol hydrogel fibers with dual networks. Carbon, 2021, 171, 201-210.	10.3	120
4	Coldâ€Resistant Nitrogen/Sulfur Dualâ€Doped Graphene Fiber Supercapacitors with Solar–Thermal Energy Conversion Effect. Chemistry - A European Journal, 2021, 27, 3473-3482.	3.3	13
5	Ultraflexible Reedlike Carbon Nanofiber Membranes Decorated with Ni–Co–S Nanosheets and Fe ₂ O ₃ –C Core–Shell Nanoneedle Arrays as Electrodes of Flexible Quasi-Solid-State Asymmetric Supercapacitors. ACS Applied Energy Materials, 2021, 4, 1505-1516.	5.1	21
6	Superelastic and ultralight electrospun carbon nanofiber/MXene hybrid aerogels with anisotropic microchannels for pressure sensing and energy storage. Journal of Colloid and Interface Science, 2021, 589, 264-274.	9.4	61
7	Oil-Water Separation Performance of Electrospray Reduced Graphene Oxide Microspheres with a Local Radially Aligned and Porous Structure. Chemical Research in Chinese Universities, 2021, 37, 528-534.	2.6	0
8	Nanoscale Polyacrylamide Copolymer/Silica Hydrogel Microspheres with High Compressive Strength and Satisfactory Dispersion Stability for Efficient Profile Control and Plugging. Industrial & Engineering Chemistry Research, 2021, 60, 10193-10202.	3.7	23
9	Continuous photocatalytic removal of chromium (VI) with structurally stable and porous Ag/Ag3PO4/reduced graphene oxide microspheres. Chemical Engineering Journal, 2020, 379, 122200.	12.7	38
10	Synthesis of novel bimetallic nickel cobalt telluride nanotubes on nickel foam for high-performance hybrid supercapacitors. Inorganic Chemistry Frontiers, 2020, 7, 477-486.	6.0	42
11	Elastic and hierarchical carbon nanofiber aerogels and their hybridsÂwith carbon nanotubes and cobalt oxide nanoparticles forÂhigh-performance asymmetric supercapacitors. Carbon, 2020, 158, 873-884.	10.3	35
12	Hierarchical TiO ₂ Nanorod Arrays/Carbon Nanofiber Membranes for Oil-in-Water Emulsion Separation. Industrial & Engineering Chemistry Research, 2020, 59, 21097-21105.	3.7	19
13	Beadlike Porous Fibrous Membrane with Switchable Wettability for Efficient Oil/Water Separation. Industrial & Engineering Chemistry Research, 2020, 59, 10894-10903.	3.7	12
14	Photothermal hierarchical carbon nanotube/reduced graphene oxide microspherical aerogels with radially orientated microchannels for efficient cleanup of crude oil spills. Journal of Colloid and Interface Science, 2020, 570, 61-71.	9.4	83
15	Photothermal graphene/UiO-66-NH2 fabrics for ultrafast catalytic degradation of chemical warfare agent simulants. Journal of Hazardous Materials, 2020, 393, 122332.	12.4	60
16	Hierarchical Transition Metal Oxide Arrays Grown on Grapheneâ€Based Fibers with Enhanced Interface by Thin Layer of Carbon toward Solidâ€ S tate Asymmetric Supercapacitors. ChemElectroChem, 2020, 7, 1860-1868.	3.4	8
17	Anisotropic CoFe ₂ O ₄ @Graphene Hybrid Aerogels with High Flux and Excellent Stability as Building Blocks for Rapid Catalytic Degradation of Organic Contaminants in a Flow-Type Setup. ACS Applied Materials & Interfaces, 2019, 11, 34222-34231.	8.0	40
18	Na2Ti3O7 nanowires with TiO2 and N-doped carbon dual-shells as binder-free electrodes for efficient sodium storage. Electrochimica Acta, 2019, 321, 134714.	5.2	10

#	Article	IF	CITATIONS
19	Electrospun and photocrosslinked gelatin/dextran–maleic anhydride composite fibers for tissue engineering. European Polymer Journal, 2019, 113, 142-147.	5.4	25
20	Reduced graphene oxide/carbon nanotube hybrid fibers with narrowly distributed mesopores for flexible supercapacitors with high volumetric capacitances and satisfactory durability. Carbon, 2019, 152, 134-143.	10.3	85
21	Silver Phosphate/Graphene Oxide Aerogel Microspheres with Radially Oriented Microchannels for Highly Efficient and Continuous Removal of Pollutants from Wastewaters. ACS Sustainable Chemistry and Engineering, 2019, 7, 11228-11240.	6.7	23
22	Optimizing the interface of C/titania@reduced graphene oxide nanofibers for improved photocatalytic activity. Journal of Materials Science, 2019, 54, 8907-8918.	3.7	19
23	Robust binder-free anodes assembled with ultralong mischcrystal TiO2 nanowires and reduced graphene oxide for high-rate and long cycle life lithium-ion storage. Journal of Power Sources, 2018, 383, 115-123.	7.8	11
24	Restorative dental resin functionalized with methacryloxy propyl trimethoxy silane to induce reversible in situ generation of enamel-like hydroxyapatite. Journal of Materials Science, 2018, 53, 16183-16197.	3.7	7
25	Sb Nanoparticles Embedded in a Nitrogenâ€Doped Carbon Matrix with Tuned Voids and Interfacial Bonds for Highâ€Rate Lithium Storage. ChemElectroChem, 2018, 5, 2653-2659.	3.4	15
26	Efficient Photocatalytic Reduction Approach for Synthesizing Chemically Bonded N-Doped TiO ₂ /Reduced Graphene Oxide Hybrid as a Freestanding Electrode for High-Performance Lithium Storage. ACS Applied Energy Materials, 2018, 1, 4186-4195.	5.1	11
27	Aligned porous chitosan/graphene oxide scaffold for bone tissue engineering. Materials Letters, 2018, 233, 78-81.	2.6	35
28	Highly Efficient High-Pressure Homogenization Approach for Scalable Production of High-Quality Graphene Sheets and Sandwich-Structured α-Fe ₂ O ₃ /Graphene Hybrids for High-Performance Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 11025-11034.	8.0	75
29	Graphene Oxide/Chitosan Aerogel Microspheres with Honeycomb-Cobweb and Radially Oriented Microchannel Structures for Broad-Spectrum and Rapid Adsorption of Water Contaminants. ACS Applied Materials & Interfaces, 2017, 9, 21809-21819.	8.0	264
30	Polylactic Acid Nanofiber Scaffold Decorated with Chitosan Islandlike Topography for Bone Tissue Engineering. ACS Applied Materials & Interfaces, 2017, 9, 21094-21104.	8.0	138
31	Tetrahedral Silver Phosphate/Graphene Oxide Hybrids as Highly Efficient Visible Light Photocatalysts with Excellent Cyclic Stability. Journal of Physical Chemistry C, 2017, 121, 25172-25179.	3.1	29
32	Fabrication of PAN@TiO 2 /Ag nanofibrous membrane with high visible light response and satisfactory recyclability for dye photocatalytic degradation. Applied Surface Science, 2017, 426, 622-629.	6.1	78
33	FeCl ₃ intercalated few-layer graphene for high lithium-ion storage performance. Journal of Materials Chemistry A, 2015, 3, 15498-15504.	10.3	38
34	Electrospun polyacrylonitrile nanofibers loaded with silver nanoparticles by silver mirror reaction. Materials Science and Engineering C, 2015, 51, 346-355.	7.3	51
35	The effect of the prefrozen process on properties of a chitosan/hydroxyapatite/poly(methyl) Tj ETQq1 1 0.7843 Advances, 2015, 5, 79679-79686.	14 rgBT /O 3.6	verlock 10 Tí 29
36	The DOPAâ€functionalized bioadhesive with properties of photocrosslinked and thermoresponsive. Journal of Applied Polymer Science, 2014, 131, .	2.6	21

#	Article	IF	CITATIONS
37	Photocrosslinkable bioadhesive based on dextran and PEG derivatives. Materials Science and Engineering C, 2014, 35, 300-306.	7.3	31
38	Electrospinning of Poly(3â€hydroxybutyrateâ€ <i>co</i> â€3â€hydroxyvalerate) nanofibers with feature surface microstructure. Journal of Applied Polymer Science, 2013, 127, 2867-2874.	2.6	15
39	Study on the biocomposites with poly(ethylene glycol) dimethacrylate and surfacedâ€grafted hydroxyapatite nanoparticles. Journal of Applied Polymer Science, 2013, 127, 1737-1743.	2.6	6
40	Preparation and characterization of a bioadhesive with poly (vinyl alcohol) crosslinking agent. Journal of Applied Polymer Science, 2013, 127, 5051-5058.	2.6	11
41	Preparation and characterization of a photocrosslinkable bioadhesive inspired by marine mussel. Journal of Photochemistry and Photobiology B: Biology, 2013, 119, 31-36.	3.8	20
42	The photocrosslinkable tissue adhesive based on copolymeric dextran/HEMA. Carbohydrate Polymers, 2013, 92, 1423-1431.	10.2	30
43	Study on the synthesis and properties of mussel mimetic poly(ethylene glycol) bioadhesive. Journal of Photochemistry and Photobiology B: Biology, 2013, 120, 183-190.	3.8	27
44	Dextran and gelatin based photocrosslinkable tissue adhesive. Carbohydrate Polymers, 2012, 90, 1428-1436.	10.2	91
45	Study on poly(lactic acid)/natural fibers composites. Journal of Applied Polymer Science, 2012, 125, E526.	2.6	55
46	Glucose-responsive insulin delivery microhydrogels from methacrylated dextran/concanavalin A: Preparation and in vitro release study. Carbohydrate Polymers, 2012, 89, 117-123.	10.2	46
47	Investigation on the preparation and application of chitosan/alginate microcapsules. Journal of Controlled Release, 2011, 152, e71-e72.	9.9	6
48	Photocrosslinkable tissue adhesive based on dextran. Carbohydrate Polymers, 2011, 86, 1578-1585.	10.2	46
49	The mineralization of electrospun chitosan/poly(vinyl alcohol) nanofibrous membranes. Carbohydrate Polymers, 2011, 84, 990-996.	10.2	41
50	Aligned polymer fibers produced via an additive electric field. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2011, 6, 44-47.	0.4	2
51	Preparation of chitosan/alginate microcapsules by high-voltage electrostatic method. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2011, 6, 48-53.	0.4	3
52	Electrospun composite nanofibrous membrane as wound dressing with good adhesion. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2011, 6, 221-226.	0.4	3
53	Electrospinning of methoxy poly(ethylene glycol)-grafted chitosan and poly(ethylene oxide) blend aqueous solution. Carbohydrate Polymers, 2011, 83, 270-276.	10.2	34
54	Preparation and properties of waterâ€soluble chitosan and polyvinyl alcohol blend films as potential bone tissue engineering matrix. Polymers for Advanced Technologies, 2010, 21, 189-195.	3.2	10

#	Article	IF	CITATIONS
55	Preparation of biaxial orientation mats from single fibers. Polymers for Advanced Technologies, 2010, 21, 606-608.	3.2	1
56	Electrospun ultrafine composite fibers from organicâ€soluble chitosan and poly(ethylene oxide). Journal of Applied Polymer Science, 2010, 117, 2113-2120.	2.6	7
57	Organicâ€soluble chitosan/polyhydroxybutyrate ultrafine fibers as skin regeneration prepared by electrospinning. Journal of Applied Polymer Science, 2010, 118, 3619-3624.	2.6	35
58	Alginate–chitosan/hydroxyapatite polyelectrolyte complex porous scaffolds: Preparation and characterization. International Journal of Biological Macromolecules, 2010, 46, 199-205.	7.5	197
59	Preparation of silica/polyurethane nanocomposites by UVâ€induced polymerization from surfaces of silica. Journal of Applied Polymer Science, 2009, 111, 1936-1941.	2.6	20
60	Preparation of porous ultrafine polyacrylonitrile (PAN) fibers by electrospinning. Polymers for Advanced Technologies, 2009, 20, 147-150.	3.2	69
61	Semi-interpenetrating polymer network hydrogels based on water-soluble N-carboxylethyl chitosan and photopolymerized poly (2-hydroxyethyl methacrylate). Carbohydrate Polymers, 2009, 75, 293-298.	10.2	43
62	Synthesis and characterization of chitosan-based hydrogels. International Journal of Biological Macromolecules, 2009, 44, 121-127.	7.5	64
63	Injectable Poly(ethylene glycol) Dimethacrylate-based Hydrogels with Hydroxyapatite. Journal of Bioactive and Compatible Polymers, 2009, 24, 405-423.	2.1	20
64	A pHâ€sensitive waterâ€soluble N arboxyethyl chitosan/poly(hydroxyethyl methacrylate) hydrogel as a potential drug sustained release matrix prepared by photopolymerization technique. Polymers for Advanced Technologies, 2008, 19, 1133-1141.	3.2	38
65	In Situ Mineralization of Hydroxyapatite on Electrospun Chitosanâ€Based Nanofibrous Scaffolds. Macromolecular Bioscience, 2008, 8, 239-246.	4.1	84
66	Preparation and characterization of Nâ€alkylated chitosan derivatives. Journal of Applied Polymer Science, 2008, 109, 1093-1098.	2.6	14
67	Photocrosslinked electrospun chitosanâ€based biocompatible nanofibers. Journal of Applied Polymer Science, 2008, 109, 3337-3343.	2.6	46
68	Fabrication and characterization of chitosan/PVA with hydroxyapatite biocomposite nanoscaffolds. Journal of Applied Polymer Science, 2008, 110, 3328-3335.	2.6	55
69	Aligned electrospun nanofibers induced by magnetic field. Journal of Applied Polymer Science, 2008, 110, 3368-3372.	2.6	44
70	Electrospun Water-Soluble Carboxyethyl Chitosan/Poly(vinyl alcohol) Nanofibrous Membrane as Potential Wound Dressing for Skin Regeneration. Biomacromolecules, 2008, 9, 349-354.	5.4	430
71	Preparation and characterization of chitosan/poly(vinyl alcohol)/poly(vinyl pyrrolidone) electrospun fibers. Frontiers of Materials Science in China, 2007, 1, 432-436.	0.5	14
72	Electrospinning of chitosan/poly(vinyl alcohol)/acrylic acid aqueous solutions. Journal of Applied Polymer Science, 2006, 102, 5692-5697.	2.6	76