Manmohan Kapur

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8422471/publications.pdf

Version: 2024-02-01

218381 276539 51 1,803 26 41 citations h-index g-index papers 66 66 66 1806 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Auxofuran, a Novel Metabolite That Stimulates the Growth of Fly Agaric, Is Produced by the Mycorrhiza Helper Bacterium Streptomyces Strain AcH 505. Applied and Environmental Microbiology, 2006, 72, 3550-3557.	1.4	153
2	Ruthenium-Catalyzed, Site-Selective C–H Allylation of Indoles with Allyl Alcohols as Coupling Partners. Organic Letters, 2016, 18, 1112-1115.	2.4	109
3	Amides as Weak Coordinating Groups in Proximal C–H Bond Activation. European Journal of Organic Chemistry, 2017, 2017, 5439-5459.	1.2	109
4	Ruthenium-Catalyzed Heteroatom-Directed Regioselective C–H Arylation of Indoles Using a Removable Tether. Organic Letters, 2015, 17, 1766-1769.	2.4	91
5	Palladium(II)-Catalyzed, Heteroatom-Directed, Regioselective C–H Nitration of Anilines Using Pyrimidine as a Removable Directing Group. Organic Letters, 2016, 18, 448-451.	2.4	68
6	Transitionâ€Metalâ€Catalyzed Siteâ€Selective Câ^'H Halogenation Reactions. Asian Journal of Organic Chemistry, 2018, 7, 1524-1541.	1.3	68
7	Traceless Directing-Group Strategy in the Ru-Catalyzed, Formal [3 + 3] Annulation of Anilines with Allyl Alcohols: A One-Pot, Domino Approach for the Synthesis of Quinolines. Organic Letters, 2017, 19, 2494-2497.	2.4	58
8	Palladium-Catalyzed, <i>ortho</i> -Selective Câ€"H Halogenation of Benzyl Nitriles, Aryl Weinreb Amides, and Anilides. Journal of Organic Chemistry, 2017, 82, 1114-1126.	1.7	57
9	A new access to polyhydroxy piperidines of the azasugar class: synthesis and glycosidase inhibition studies. Organic and Biomolecular Chemistry, 2003, 1, 3321.	1.5	55
10	Catalyst-controlled positional-selectivity in C–H functionalizations. Organic and Biomolecular Chemistry, 2019, 17, 1007-1026.	1.5	50
11	Transitionâ€Metalâ€Catalyzed Câ^'H Functionalization Reactions of Ï€â€Deficient Heterocycles. Asian Journal of Organic Chemistry, 2018, 7, 1217-1235.	1.3	49
12	Transition metal-catalyzed C–H functionalizations of indoles. New Journal of Chemistry, 2021, 45, 13692-13746.	1.4	48
13	Design and Development of a Common Synthetic Strategy for a Variety of 1-N-Iminosugars. Organic Letters, 2002, 4, 3883-3886.	2.4	46
14	Catalyst Control in Positional-Selective C–H Alkenylation of Isoxazoles and a Ruthenium-Mediated Assembly of Trisubstituted Pyrroles. Organic Letters, 2019, 21, 2134-2138.	2.4	46
15	Temperature Induced Morphological Transitions from Native to Unfolded Aggregated States of Human Serum Albumin. Journal of Physical Chemistry B, 2014, 118, 7267-7276.	1.2	45
16	Ruthenium-Catalyzed Câ€"H Functionalization of Benzoic Acids with Allyl Alcohols: A Controlled Reactivity Switch between Câ€"H Alkenylation and Câ€"H Alkylation Pathways. Organic Letters, 2018, 20, 4934-4937.	2.4	44
17	Dehydrogenative Heck Reaction (Fujiwara–Moritani Reaction) of Unactivated Olefins with Simple Dihydropyrans under Aprotic Conditions. Advanced Synthesis and Catalysis, 2013, 355, 2185-2190.	2.1	43
18	A general strategy towards the synthesis of 1-N-iminosugar type glycosidase inhibitors: demonstration by the synthesis of d- as well as l-glucose type iminosugars (isofagomines). Tetrahedron Letters, 2000, 41, 8821-8824.	0.7	41

#	Article	IF	Citations
19	Heteroatom-Guided, Palladium-Catalyzed Regioselective C–H Functionalization in the Synthesis of 3-Arylquinolines. Organic Letters, 2013, 15, 3310-3313.	2.4	41
20	Palladium-Catalyzed Aerobic Oxidative Coupling of Allylic Alcohols with Anilines in the Synthesis of Nitrogen Heterocycles. Journal of Organic Chemistry, 2018, 83, 3941-3951.	1.7	35
21	One Substrate, Two Modes of C–H Functionalization: A Metal-Controlled Site-Selectivity Switch in C–H Arylation Reactions. Organic Letters, 2017, 19, 262-265.	2.4	34
22	Oxazolinylâ€Assisted Ru(II)â€Catalyzed Câ^'H Functionalization Based on Carbene Migratory Insertion: A Oneâ€Pot Threeâ€Component Cascade Cyclization. Advanced Synthesis and Catalysis, 2019, 361, 73-78.	2.1	34
23	Fujiwara–Moritani Reaction of Weinreb Amides using a Rutheniumâ€Catalyzed Câ^'H Functionalization Reaction. Chemistry - an Asian Journal, 2015, 10, 1505-1512.	1.7	33
24	Palladium catalyzed, heteroatom-guided C–H functionalization in the synthesis of substituted isoquinolines and dihydroisoquinolines. Chemical Communications, 2014, 50, 7322.	2.2	31
25	Palladium-Catalyzed \hat{l}_{\pm} -Arylation of Enones in the Synthesis of 2-Alkenylindoles and Carbazoles. Organic Letters, 2015, 17, 1324-1327.	2.4	31
26	Transitionâ€Metalâ€Catalyzed Câ^'H Bond Functionalization of Arenes/Heteroarenes <i>via</i> Tandem Câ^'H Activation and Subsequent Carbene Migratory Insertion Strategy. Chemical Record, 2021, 21, 4088-4122.	2.9	31
27	Product Control using Substrate Design: Rutheniumâ€Catalysed Oxidative Câ^'H Olefinations of Cyclic Weinreb Amides. Chemistry - A European Journal, 2016, 22, 16986-16990.	1.7	26
28	Cobaltâ€Catalyzed Câ^'H Nitration of Indoles by Employing a Removable Directing Group. Chemistry - an Asian Journal, 2018, 13, 861-870.	1.7	25
29	Unusual Reactivity of 4-Vinyl Isoxazoles in the Copper-Mediated Synthesis of Pyridines, Employing DMSO as a One-Carbon Surrogate. Organic Letters, 2020, 22, 5855-5860.	2.4	25
30	Rhodium(III)-Catalyzed Directed C–H Dienylation of Anilides with Allenes Leads to Highly Conjugated Systems. Organic Letters, 2019, 21, 3237-3241.	2.4	24
31	Transition Metalâ€Mediated Functionalization of Isoxazoles: A Review. Asian Journal of Organic Chemistry, 2021, 10, 3127-3165.	1.3	24
32	Palladium-Catalyzed \hat{l}_{\pm} -Arylation of Silylenol Ethers in the Synthesis of Isoquinolines and Phenanthridines. Organic Letters, 2018, 20, 441-444.	2.4	23
33	Regioselectivity Switch Achieved in the Palladium Catalyzed α-Arylation of Enones by Employing the Modified Kuwajima–Urabe Conditions. Organic Letters, 2012, 14, 1808-1811.	2.4	22
34	Concise Strategy to the Core Structure of the Macrolide Queenslandon. Organic Letters, 2006, 8, 5833-5836.	2.4	20
35	Heteroatomâ€Guided, Palladiumâ€Catalyzed, Siteâ€Selective CH Arylation of 4 <i>H</i> àê€Chromenes: Diastereoselective Assembly of the Core Structure of Myristininâ€B through Dual CH Functionalization. Chemistry - A European Journal, 2015, 21, 9905-9911.	1.7	16
36	Palladium-catalyzed synthesis of 2-alkenyl-3-arylindoles via a dual α-arylation strategy: formal synthesis of the antilipemic drug fluvastatin. Organic and Biomolecular Chemistry, 2015, 13, 10995-11002.	1.5	15

#	Article	IF	CITATIONS
37	Ruthenium-catalyzed oxidative coupling of vinylene carbonate with isoxazoles: access to fused anthranils. Chemical Communications, 2022, 58, 4476-4479.	2.2	15
38	Palladium-Mediated Remote Functionalization in \hat{I}^3 - and $\hat{I}\mu$ -Arylations and Alkenylations of Unblocked Cyclic Enones. Organic Letters, 2019, 21, 9071-9075.	2.4	13
39	Iridium(III)-Catalyzed C(3)–H Alkylation of Isoquinolines via Metal Carbene Migratory Insertion. Organic Letters, 2021, 23, 8694-8698.	2.4	13
40	Total Synthesis of the Proposed Structure of Mycobactin J. Organic Letters, 2018, 20, 6511-6515.	2.4	12
41	Oxazolinyl-Assisted Ru(II)-Catalyzed C–H Allylation with Allyl Alcohols and Synthesis of 4-Methyleneisochroman-1-ones. Journal of Organic Chemistry, 2019, 84, 12881-12892.	1.7	12
42	A Novel Approach to Both the Enantiomers of Potent Glycosidase Inhibitor Isofagomine via PET-Promoted Cyclization of 1-[Benzyl(trimethylsilyl-methyl)amino]-1,4,5-trideoxy-2,3-O-(1-methylethylidene)-threo-pent-4-ynitol. Synthesis, 2001, 112, 1263.	1.2	11
43	Palladium-catalyzed functionalizations of acidic and non-acidic C(sp ³)â€"H bonds â€" recent advances. Chemical Communications, 2021, 57, 1693-1714.	2.2	10
44	Catalyst Control in Switching the Site Selectivity of Câ^'H Olefinations of 1,2â€Dihydroquinolines: An Approach to Positionalâ€Selective Functionalization of Quinolines. Chemistry - A European Journal, 2020, 26, 927-938.	1.7	8
45	Ru(<scp>ii</scp>)-Catalyzed, Cu(<scp>ii</scp>)-mediated carbene migratory insertion in the synthesis of trisubstituted pyrroles from isoxazoles. Organic and Biomolecular Chemistry, 2021, 19, 3428-3433.	1.5	7
46	Stereoselective Synthesis of Protected 1,2-Diols and 1,2,3-Triols by a Tandem Hydroborationâ "Coupling Sequence. Organic Letters, 2006, 8, 1629-1632.	2.4	6
47	Rh(III)-Catalyzed C(7)–H Alkylation of Quinolines in the Synthesis of Angular π-Extended Pyrroloquinolines for Single-Component White-Light Emission. Organic Letters, 2022, 24, 2186-2191.	2.4	6
48	Ruthenium-Catalyzed Directed C(3) \hat{a} \in "H Olefination of N-Acetyl-1,2-dihydroisoquinolines: A Method to Achieve C3-Olefinated Isoquinolines. Synthesis, 2019, 51, 2515-2522.	1.2	5
49	Dioxazolones as masked ester surrogates in the Pd(<scp>ii</scp>)-catalyzed direct C–H arylation of 6,5-fused heterocycles. Chemical Communications, 2019, 55, 11187-11190.	2.2	4
50	Ruthenium(II)―and Copper(II)â€Mediated Synthesis of Trisubstituted Pyrroles from Isoxazoles and Acrylate Esters. Asian Journal of Organic Chemistry, 2020, 9, 1065-1069.	1.3	4
51	Rh(III)â€Catalyzed Oneâ€Step Synthesis of <i>ortho</i> â€Alkynylated Perylene Imide Dyes: Optical and Electrochemical Properties of New Derivatives. Chemistry - A European Journal, 2022, 28, .	1.7	3