Chan Cao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8422176/publications.pdf

Version: 2024-02-01

44 papers

1,855 citations

304368
22
h-index

39 g-index

44 all docs 44 docs citations

44 times ranked 1337 citing authors

#	Article	IF	CITATIONS
1	Biological nanopores for single-molecule sensing. IScience, 2022, 25, 104145.	1.9	25
2	Ultrasensitive Label-Free Detection of Protein–Membrane Interaction Exemplified by Toxin-Liposome Insertion. Journal of Physical Chemistry Letters, 2022, 13, 3197-3201.	2.1	2
3	Decoding Digital Information Stored in Polymer by Nanopore. Biophysical Journal, 2021, 120, 98a.	0.2	1
4	The emerging landscape of single-molecule protein sequencing technologies. Nature Methods, 2021, 18, 604-617.	9.0	198
5	Aerolysin nanopores decode digital information stored in tailored macromolecular analytes. Science Advances, 2020, 6, .	4.7	57
6	Single-molecule studies of amyloid proteins: from biophysical properties to diagnostic perspectives. Quarterly Reviews of Biophysics, 2020, 53, e12.	2.4	12
7	Single-molecule sensing of peptides and nucleic acids by engineered aerolysin nanopores. Nature Communications, 2019, 10, 4918.	5.8	74
8	Detection of Peptides with Different Charges and Lengths by Using the Aerolysin Nanopore. ChemElectroChem, 2019, 6, 126-129.	1.7	55
9	Real-Time and Accurate Identification of Single Oligonucleotide Photoisomers via an Aerolysin Nanopore. Analytical Chemistry, 2018, 90, 4268-4272.	3.2	34
10	A General Strategy of Aerolysin Nanopore Detection for Oligonucleotides with the Secondary Structure. Small, 2018, 14, e1704520.	5.2	21
11	Rationally Designed Sensing Selectivity and Sensitivity of an Aerolysin Nanopore via Site-Directed Mutagenesis. ACS Sensors, 2018, 3, 779-783.	4.0	55
12	Biological Nanopores: Confined Spaces for Electrochemical Single-Molecule Analysis. Accounts of Chemical Research, 2018, 51, 331-341.	7.6	130
13	Biosensing: A General Strategy of Aerolysin Nanopore Detection for Oligonucleotides with the Secondary Structure (Small 18/2018). Small, 2018, 14, 1870080.	5.2	3
14	A single biomolecule interface for advancing the sensitivity, selectivity and accuracy of sensors. National Science Review, 2018, 5, 450-452.	4.6	64
15	Processes at nanoelectrodes: general discussion. Faraday Discussions, 2018, 210, 235-265.	1.6	1
16	Dynamics of nanointerfaces: general discussion. Faraday Discussions, 2018, 210, 451-479.	1.6	4
17	Mapping the sensing spots of aerolysin for single oligonucleotides analysis. Nature Communications, 2018, 9, 2823.	5.8	60
18	Monitoring disulfide bonds making and breaking in biological nanopore at single molecule level. Science China Chemistry, 2018, 61, 1385-1388.	4.2	14

#	Article	lF	CITATIONS
19	Identification of Essential Sensitive Regions of the Aerolysin Nanopore for Single Oligonucleotide Analysis. Analytical Chemistry, 2018, 90, 7790-7794.	3.2	61
20	A Time-Resolved Single-Molecular Train Based on Aerolysin Nanopore. CheM, 2018, 4, 1893-1901.	5.8	33
21	Detection of DNA Methylation with Aerolysin Nanopore. Biophysical Journal, 2017, 112, 332a.	0.2	2
22	Direct Identification of Adenine, Thymine, Cytosine and Guanine using Aerolysin Nanopore. Biophysical Journal, 2017, 112, 460a.	0.2	0
23	Selective and Sensitive Detection of Methylcytosine by Aerolysin Nanopore under Serum Condition. Analytical Chemistry, 2017, 89, 11685-11689.	3.2	52
24	Direct Readout of Single Nucleobase Variations in an Oligonucleotide. Small, 2017, 13, 1702011.	5.2	39
25	Construction of an aerolysin nanopore in a lipid bilayer for single-oligonucleotide analysis. Nature Protocols, 2017, 12, 1901-1911.	5.5	50
26	Single-Molecule Analysis of Colorectal Cancer-associated MicroRNAs via a Biological Nanopore. Acta Chimica Sinica, 2017, 75, 1087.	0.5	7
27	Real-time plasmonic monitoring of electrocatalysis on single nanorods. Journal of Electroanalytical Chemistry, 2016, 781, 257-264.	1.9	10
28	Single-Molecule Masspic Analysis of Short-Chain PEG. Biophysical Journal, 2016, 110, 639a.	0.2	0
29	Single Nucleotide Discrimination with Electro-Optical Nanopore. Biophysical Journal, 2016, 110, 656a.	0.2	0
30	Single Oligonucleotide Discrimination with Aerolysin Nanopore. Biophysical Journal, 2016, 110, 654a.	0.2	0
31	Driven Translocation of Polynucleotides Through an Aerolysin Nanopore. Analytical Chemistry, 2016, 88, 5046-5049.	3.2	51
32	Discrimination of oligonucleotides of different lengths with a wild-type aerolysin nanopore. Nature Nanotechnology, 2016, 11, 713-718.	15.6	333
33	Length- and Species-Selective Detection of Short Oligonucleotides using a Microelectrode Cavity Array of Biological Nanopores. Biophysical Journal, 2016, 110, 200a.	0.2	0
34	Single molecule study of initial structural features on the amyloidosis process. Chemical Communications, 2016, 52, 5542-5545.	2.2	26
35	Alkyl detection facilitated by a DNA conjugate with an \hat{l}_{\pm} -hemolysin nanopore. RSC Advances, 2016, 6, 105-108.	1.7	1
36	Detection of Single Oligonucleotide by an Aerolysin Nanopore. Acta Chimica Sinica, 2016, 74, 734.	0.5	11

#	Article	IF	CITATION
37	Accurate Data Process for Nanopore Analysis. Analytical Chemistry, 2015, 87, 907-913.	3.2	92
38	A Low Noise Amplifier System for Nanopore-based Single Molecule Analysis. Chinese Journal of Analytical Chemistry, 2015, 43, 971-976.	0.9	11
39	Reply to Comment on Accurate Data Process for Nanopore Analysis. Analytical Chemistry, 2015, 87, 10653-10656.	3.2	15
40	Enhanced Resolution of Low Molecular Weight Poly(Ethylene Glycol) in Nanopore Analysis. Analytical Chemistry, 2014, 86, 11946-11950.	3.2	20
41	Single molecule analysis by biological nanopore sensors. Analyst, The, 2014, 139, 3826-3835.	1.7	93
42	Real-time monitoring of the oxidative response of a membrane–channel biomimetic system to free radicals. Chemical Communications, 2013, 49, 6584.	2.2	13
43	Analysis of a Single \hat{l} ±-Synuclein Fibrillation by the Interaction with a Protein Nanopore. Analytical Chemistry, 2013, 85, 8254-8261.	3.2	67
44	A Stimuli-Responsive Nanopore Based on a Photoresponsive Host-Guest System. Scientific Reports, 2013, 3, 1662.	1.6	58