Qi Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8421867/publications.pdf

Version: 2024-02-01

933447 713466 49 528 10 21 h-index citations g-index papers 49 49 49 539 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Accelerating LMS-Based Equalization With Correlated Training Sequence in Bandlimited IM/DD Systems. Journal of Lightwave Technology, 2022, 40, 4268-4275.	4.6	2
2	Simultaneous Nonlinear Self-Interference Cancellation and Signal of Interest Recovery Using Dual Input Deep Neural Network in New Radio Access Networks. Journal of Lightwave Technology, 2021, 39, 2046-2051.	4.6	9
3	Data Efficient Estimation for Quality of Transmission Through Active Learning in Fiber-Wireless Integrated Network. Journal of Lightwave Technology, 2021, 39, 5691-5698.	4.6	4
4	Novel Parallel Interference Cancellation Scheme for Non-Orthogonal Multiple Access in Millimeter-Wave RAN Using Convolutional Neural Network. , 2021, , .		0
5	Demonstration of Pattern Division Multiple Access With Message Passing Algorithm for Multi-Channel mmWave Uplinks via RoF Mobile Fronthaul. Journal of Lightwave Technology, 2020, 38, 5908-5915.	4.6	5
6	Flexible Coherent Communication System With Adaptable SNR and Laser Phase Noise Tolerance for Probabilistically Shaped QAM. Journal of Lightwave Technology, 2020, 38, 6178-6186.	4.6	2
7	Performance Enhancement of Optical Comb Based Microwave Photonic Filter by Machine Learning Technique. Journal of Lightwave Technology, 2020, 38, 5302-5310.	4.6	13
8	Non-Orthogonal Uplink Services Through Co-Transport of D-RoF/A-RoF in Mobile Fronthaul. Journal of Lightwave Technology, 2020, 38, 3637-3643.	4.6	17
9	Asynchronous Multi-Service Fiber-Wireless Integrated Network Using UFMC and PS for Flexible 5G Applications. , 2020, , .		3
10	Combining Efficient Probabilistic Shaping and Deep Neural Network to Mitigate Capacity Crunch in 5G Fronthaul. , 2020, , .		2
11	Intelligent Bandwidth Allocation for Latency Management in NG-EPON using Reinforcement Learning Method. , 2020, , .		2
12	Demonstration of Pattern Division Multiple Access with Message Passing Algorithm in MMW-RoF Systems. , 2020, , .		2
13	Hybrid W-Band/Baseband Transmission for Fixed-Mobile Convergence Supported by Heterodyne Detection with Data-Carrying Local Oscillator., 2020,,.		1
14	Low-complexity equalizer with a hybrid decision scheme for 50  Gb/s√l® PAM4-PON using a low-cost 10 G receiver. Optics Letters, 2020, 45, 6278.	3.3	3
15	Efficient Power-Division NOMA for Intelligent Optical Access Network Enabled by Deep Learning. , 2019, , .		3
16	Multi-IF-Over-Fiber Based Mobile Fronthaul With Blind Linearization and Flexible Dispersion Induced Bandwidth Penalty Mitigation. Journal of Lightwave Technology, 2019, 37, 1424-1433.	4.6	23
17	A Reliable OFDM-Based MMW Mobile Fronthaul With DSP-Aided Sub-Band Spreading and Time-Confined Windowing. Journal of Lightwave Technology, 2019, 37, 3236-3243.	4.6	16
18	\$4imes100\$ -Gb/s PAM-4 FSO Transmission Based on Polarization Modulation and Direct Detection. IEEE Photonics Technology Letters, 2019, 31, 755-758.	2.5	28

#	Article	IF	CITATIONS
19	Polarization-Tracking-Free PDM Supporting Hybrid Digital-Analog Transport for Fixed-Mobile Systems. IEEE Photonics Technology Letters, 2019, 31, 54-57.	2.5	23
20	Demonstration of high precision 3D indoor positioning system based on two-layer ANN machine learning technique. , $2019, , .$		18
21	Proactive real-time interference avoidance in a 5G millimeter-wave over fiber mobile fronthaul using SARSA reinforcement learning. Optics Letters, 2019, 44, 4347.	3.3	10
22	Tunable Microwave Photonic Filter for Millimeter-wave Mobile Fronthaul Systems., 2018,,.		8
23	Extreme Mobile Broadband Tier-II Fronthaul Network Enabled by a New DNN Machine Learning Framework. , 2018, , .		1
24	Broadband IF-Over-Fiber Transmission Based on a Polarization Modulator. IEEE Photonics Technology Letters, 2018, 30, 2087-2090.	2.5	4
25	An Ultra-Reliable MMW/FSO A-RoF System Based on Coordinated Mapping and Combining Technique for 5G and Beyond Mobile Fronthaul. Journal of Lightwave Technology, 2018, 36, 4952-4959.	4.6	48
26	Enhanced Multi-Level Signal Recovery in Mobile Fronthaul Network Using DNN Decoder. IEEE Photonics Technology Letters, 2018, 30, 1511-1514.	2.5	20
27	Wideband co-site interference cancellation based on hybrid electrical and optical techniques. Optics Letters, 2014, 39, 6537.	3.3	61
28	Lattice Reduction Aided Transceiver Design for Multiuser MIMO Downlink Transmissions., 2014,,.		1
29	Receiver Designs for Differential UWB Systems with Multiple Access Interference. IEEE Transactions on Communications, 2014, 62, 126-134.	7.8	9
30	Shot Interference Detection and Mitigation for Heterogeneous Networks. IEEE Transactions on Vehicular Technology, 2014, 63, 225-236.	6.3	8
31	Joint Power Allocation and Path Selection for Multi-Hop Noncoherent Decode and Forward UWB Communications. IEEE Transactions on Wireless Communications, 2014, 13, 1397-1409.	9.2	9
32	Detecting UWB signals using cyclic features. , 2013, , .		1
33	Improved Element-Based Lattice Reduction Algorithms for Wireless Communications. IEEE Transactions on Wireless Communications, 2013, 12, 4414-4421.	9.2	8
34	Element-Based Lattice Reduction Algorithms for Large MIMO Detection. IEEE Journal on Selected Areas in Communications, 2013, 31, 274-286.	14.0	115
35	Generalized Code-Multiplexing for UWB Communications. IEEE Transactions on Wireless Communications, 2013, 12, 2806-2816.	9.2	2
36	Maximum likelihood detectors for generalized code-multiplexing ultra-wideband systems., 2013,,.		0

#	Article	IF	CITATIONS
37	Joint transceiver designs using lattice reduction algorithms. , 2013, , .		3
38	Lattice-reduction-aided Wiener filtering for communications over ISI channels. , 2012, , .		0
39	An improved LR-aided K-best algorithm for MIMO detection. , 2012, , .		16
40	A cooperative approach for amplify-and-forward differential transmitted reference IR-UWB relay systems. , 2012, , .		7
41	Soft-Input Soft-Output Multiple Symbol Differential Detection for UWB Communications. IEEE Communications Letters, 2012, 16, 1296-1299.	4.1	3
42	Designing Low-Complexity Near-Optimal Multiple-Symbol Detectors for Impulse Radio UWB Systems. IEEE Transactions on Signal Processing, 2012, 60, 2460-2469.	5.3	5
43	Generalized code-multiplexing transmissions for UWB systems. , 2011, , .		1
44	Receiver designs for UWB differential transmitted reference systems with multiple access interference. , 2011, , .		3
45	Designing low-complexity detectors for generalized SC-FDMA systems. , 2011, , .		4
46	Robust designs for femtocell networks with interference from macrocell users. , 2011, , .		1
47	Extended multi-symbol differential detection for IR-UWB communications. , 2010, , .		0
48	Near-ML detection based on semi-definite programming for UWB communications. , 2010, , .		1
49	A near-optimal multi-symbol based detector for UWB communications. , 2010, , .		3