Masato Yoshino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8421359/publications.pdf

Version: 2024-02-01

840776 552781 1,018 28 11 26 citations h-index g-index papers 30 30 30 769 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Revisiting the flight dynamics of take-off of a butterfly: experiments and CFD simulations for a cabbage white butterfly. Biology Open, 2022, $11,\ldots$	1.2	3
2	Comparative study between a discrete vortex method and an immersed boundary–lattice Boltzmann method in 2D flapping flight analysis. International Journal of Modern Physics C, 2021, 32, 2150005.	1.7	1
3	Simple extended lattice Boltzmann methods for incompressible viscous single-phase and two-phase fluid flows. Physics of Fluids, 2021, 33, .	4.0	12
4	Local force calculations by an improved stress tensor discontinuity-based immersed boundary–lattice Boltzmann method. Physics of Fluids, 2021, 33, .	4.0	6
5	Particle-resolved simulations of ice slurry flows in a square duct by the thermal immersed boundary–lattice Boltzmann method. Computers and Fluids, 2021, 228, 105064.	2.5	5
6	Free flight simulations of a dragonfly-like flapping wing–body model using the immersed boundary–improved lattice kinetic scheme. The Proceedings of the Computational Mechanics Conference, 2021, 2021.34, 166.	0.0	0
7	Asymptotic equivalence of forcing terms in the lattice Boltzmann method within second-order accuracy. Physical Review E, 2020, 102, 013308.	2.1	5
8	Numerical simulations of solid–liquid and solid–solid interactions in ice slurry flows by the thermal immersed boundary–lattice Boltzmann method. International Journal of Heat and Mass Transfer, 2020, 157, 119944.	4.8	18
9	Level-set based topology optimization of transient flow using lattice Boltzmann method considering an oscillating flow condition. Computers and Mathematics With Applications, 2020, 80, 82-108.	2.7	9
10	Numerical Analysis of Bifurcation Angles and Branch Patterns in Intracranial Aneurysm Formation. Neurosurgery, 2019, 85, E31-E39.	1.1	10
11	Effect of chordwise wing flexibility on flapping flight of a butterfly model using immersed-boundary lattice Boltzmann simulations. Physical Review E, 2019, 100, 013104.	2.1	10
12	Numerical simulation of head-on collision dynamics of binary droplets with various diameter ratios by the two-phase lattice kinetic scheme. Computers and Fluids, 2018, 168, 304-317.	2.5	15
13	Dynamic behavior of binary water droplets approaching each other in cloud by the improved two-phase lattice Boltzmann simulation. Transactions of the JSME (in Japanese), 2018, 84, 18-00023-18-00023.	0.2	0
14	A stress tensor discontinuity-based immersed boundary-lattice Boltzmann method. Computers and Fluids, 2018, 172, 593-608.	2.5	9
15	A thermal immersed boundary–lattice Boltzmann method for moving-boundary flows with Dirichlet and Neumann conditions. International Journal of Heat and Mass Transfer, 2018, 121, 1099-1117.	4.8	38
16	Numerical Simulations for Aerodynamic Performance of a Butterfly-Like Flapping Wing-Body Model with Various Wing Planforms. Communications in Computational Physics, 2018, 23, .	1.7	7
17	Accuracy of the laminar boundary layer on a flat plate in an immersed boundary-lattice Boltzmann simulation. Journal of Fluid Science and Technology, 2016, 11, JFST0017-JFST0017.	0.6	8
18	Topology optimization in thermal-fluid flow using the lattice Boltzmann method. Journal of Computational Physics, 2016, 307, 355-377.	3.8	82

#	Article	IF	CITATIONS
19	Topology optimization using the lattice Boltzmann method incorporating level set boundary expressions. Journal of Computational Physics, 2014, 274, 158-181.	3.8	75
20	Three-Dimensional Lattice Boltzmann Simulation of Two-Phase Flow Containing a Deformable Body with a Viscoelastic Membrane. Communications in Computational Physics, 2011, 9, 1397-1413.	1.7	10
21	Lattice Boltzmann Simulation of Nucleate Pool Boiling in Saturated Liquid. Communications in Computational Physics, 2011, 9, 1347-1361.	1.7	13
22	3812 Verification by Experiment of Lubricant Displacement on Magnetic Disks under Flying Head. The Proceedings of the JSME Annual Meeting, 2008, 2008.5, 287-288.	0.0	0
23	Mass Transfer Analysis of Calcium in Concrete Using the Lattice Kinetic Scheme for a Binary Miscible Fluid Mixture. 880-02 Nihon Kikai Gakkai RonbunshA« Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2007, 73, 973-980.	0.2	0
24	A Lattice Boltzmann Method for a Binary Miscible Fluid Mixture and Its Application to a Heat-Transfer Problem. Journal of Computational Physics, 2002, 179, 201-215.	3.8	161
25	Lattice Boltzmann simulation of flows in a three-dimensional porous structure. International Journal for Numerical Methods in Fluids, 1999, 29, 737-748.	1.6	91
26	Numerical Analysis of Unsteady Flows in a Three-Dimensional Porous Structure Kagaku Kogaku Ronbunshu, 1999, 25, 979-986.	0.3	1
27	Accuracy of the lattice Boltzmann method for small Knudsen number with finite Reynolds number. Physics of Fluids, 1997, 9, 3535-3542.	4.0	97
28	A nonâ€slip boundary condition for lattice Boltzmann simulations. Physics of Fluids, 1995, 7, 2928-2930.	4.0	322