Heidi S Dungey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8420942/publications.pdf

Version: 2024-02-01

361045 288905 55 1,692 20 40 citations h-index g-index papers 57 57 57 1877 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Assessing very high resolution UAV imagery for monitoring forest health during a simulated disease outbreak. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 131, 1-14.	4.9	249
2	PLANT GENETICS AFFECTS ARTHROPOD COMMUNITY RICHNESS AND COMPOSITION: EVIDENCE FROM A SYNTHETIC EUCALYPT HYBRID POPULATION. Evolution; International Journal of Organic Evolution, 2000, 54, 1938-1946.	1.1	178
3	PLANT HYBRID ZONES AFFECT BIODIVERSITY: TOOLS FOR A GENETIC-BASED UNDERSTANDING OF COMMUNITY STRUCTURE. Ecology, 1999, 80, 416-428.	1.5	157
4	Interspecific hybridization of Eucalyptus: key issues for breeders and geneticists. New Forests, 2004, 27, 115-138.	0.7	151
5	Genotype by environment interactions in forest tree breeding: review of methodology and perspectives on research and application. Tree Genetics and Genomes, 2017, 13, 1.	0.6	132
6	Genetics of wood stiffness and its component traits inPinus radiata. Canadian Journal of Forest Research, 2006, 36, 1165-1178.	0.8	65
7	Phenotyping Whole Forests Will Help to Track Genetic Performance. Trends in Plant Science, 2018, 23, 854-864.	4.3	50
8	Comparisons of genetic parameters and clonal value predictions from clonal trials and seedling base population trials of radiata pine. Tree Genetics and Genomes, 2009, 5, 269-278.	0.6	46
9	Pine hybrids â€" a review of their use performance and genetics. Forest Ecology and Management, 2001, 148, 243-258.	1.4	45
10	Efficiency of genomic prediction across two Eucalyptus nitens seed orchards with different selection histories. Heredity, 2019, 122, 370-379.	1.2	42
11	Ontogenetic variation in levels of gibberellin A1 in Pisum. Planta, 1992, 186, 166-71.	1.6	39
12	Quantification of realised genetic gain in radiata pine and its incorporation into growth and yield modelling systems. Canadian Journal of Forest Research, 2015, 45, 1676-1687.	0.8	36
13	Parentage Reconstruction in Eucalyptus nitens Using SNPs and Microsatellite Markers: A Comparative Analysis of Marker Data Power and Robustness. PLoS ONE, 2015, 10, e0130601.	1.1	36
14	Exploration of genetic architecture through sib-ship reconstruction in advanced breeding population of Eucalyptus nitens. PLoS ONE, 2017, 12, e0185137.	1.1	34
15	A high-density exome capture genotype-by-sequencing panel for forestry breeding in Pinus radiata. PLoS ONE, 2019, 14, e0222640.	1.1	30
16	Effect of Hidden Relatedness on Single-Step Genetic Evaluation in an Advanced Open-Pollinated Breeding Program. Journal of Heredity, 2018, 109, 802-810.	1.0	28
17	Expected benefit of genomic selection over forward selection in conifer breeding and deployment. PLoS ONE, 2018, 13, e0208232.	1.1	27
18	Genomic selection for non-key traits in radiata pine when the documented pedigree is corrected using DNA marker information. BMC Genomics, 2019, 20, 1026.	1.2	27

#	Article	IF	CITATIONS
19	Predicting the spatial distribution of Cupressus lusitanica productivity in New Zealand. Forest Ecology and Management, 2009, 258, 217-223.	1.4	23
20	Marker Selection in Multivariate Genomic Prediction Improves Accuracy of Low Heritability Traits. Frontiers in Genetics, 2020, 11, 499094.	1.1	23
21	Forest-Scale Phenotyping: Productivity Characterisation Through Machine Learning. Frontiers in Plant Science, 2020, 11, 99.	1.7	21
22	Genetic parameters and clone by environment interactions for growth and foliar nutrient concentrations in radiata pine on 14 widely diverse New Zealand sites. Tree Genetics and Genomes, 2015, 11, 1.	0.6	17
23	Genotype $\tilde{A}-$ site $\tilde{A}-$ silviculture interactions in radiata pine: knowledge, working hypotheses and pointers for research \hat{A} . New Zealand Journal of Forestry Science, 2017, 47, .	0.8	16
24	Determining the main and interactive effect of age and clone on wood density, microfibril angle, and modulus of elasticity for Pinus radiata. Canadian Journal of Forest Research, 2010, 40, 1550-1557.	0.8	15
25	Effect of trait's expression level on single-step genomic evaluation of resistance to Dothistroma needle blight. BMC Plant Biology, 2020, 20, 205.	1.6	14
26	Modelling the effects of genetic improvement on radiata pine wood density. New Zealand Journal of Forestry Science, 2016, 46, .	0.8	13
27	First evidence of genetic-based tolerance to red needle cast caused by Phytophthora pluvialis in radiata pine. New Zealand Journal of Forestry Science, 2014, 44, .	0.8	12
28	Quantifying the influence of seedlot and stand density on growth, wood properties and the economics of growing radiata pine. Forestry, 2018, 91, 327-340.	1.2	12
29	Nurse tissue for embryo rescue: testing new conifer somatic embryogenesis methods in a F1 hybrid pine. Trees - Structure and Function, 2017, 31, 273-283.	0.9	11
30	Quantitative Genetic Variation in Bark Stripping of Pinus radiata. Forests, 2020, 11, 1356.	0.9	11
31	Susceptibility of someEucalyptusspecies and their hybrids to possum damage. Australian Forestry, 2002, 65, 23-30.	0.3	10
32	Stand density and genetic improvement have site-specific effects on the economic returns from Pinus radiata plantations. Forest Ecology and Management, 2019, 446, 80-92.	1.4	10
33	The effectiveness of cloning for the genetic improvement of Mexican white cypress Cupressus lusitanica (Mill.). Tree Genetics and Genomes, 2013, 9, 443-453.	0.6	9
34	Assessing the genetic variation of tolerance to red needle cast in a Pinus radiata breeding population. Tree Genetics and Genomes, 2018, 14, 1.	0.6	9
35	Evaluation of forest tree breeding strategies based on partial pedigree reconstruction through simulations: <i>Pinus pinaster</i> and <i>Eucalyptus nitens</i> as case studies. Canadian Journal of Forest Research, 2019, 49, 1504-1515.	0.8	9
36	Spatial Models With Inter-Tree Competition From Airborne Laser Scanning Improve Estimates of Genetic Variance. Frontiers in Plant Science, 2020, 11, 596315.	1.7	9

#	Article	IF	Citations
37	Development and Validation of a 36K SNP Array for Radiata Pine (Pinus radiata D.Don). Forests, 2022, 13, 176.	0.9	8
38	Genotype-by-environment interaction in coast redwood outside natural distribution - search for environmental cues. BMC Genetics, 2020, 21, 15.	2.7	7
39	Heartwood of Cupressus lusitanica, C. macrocarpa, Leyland and Ovens cypress and prediction of its durability using near-infrared spectroscopy. European Journal of Wood and Wood Products, 2013, 71, 183-192.	1.3	6
40	Genetic improvement of resistance to cyclaneusma needle cast in Pinus radiata. Canadian Journal of Forest Research, 2019, 49, 128-133.	0.8	6
41	Improvement of non-key traits in radiata pine breeding programme when long-term economic importance is uncertain. PLoS ONE, 2017, 12, e0177806.	1.1	6
42	Intraspecific hybridization in Pinus caribaea var. hondurensis II. Genetic parameters. Euphytica, 2003, 129, 159-168.	0.6	4
43	Growth and productivity of New Zealand kauri (Agathis australis (D.Don) Lindl.) in planted forests. New Zealand Journal of Forestry Science, 2014, 44, .	0.8	4
44	Genotype by environment interaction for growth and Dothistroma resistance and clonal connectivity between environments in radiata pine in New Zealand and Australia. PLoS ONE, 2018, 13, e0205402.	1.1	4
45	Modelling of population structure through contemporary groups in genetic evaluation. BMC Genetics, 2019, 20, 81.	2.7	4
46	Genetic Variation for Economically Important Traits in Cupressus lusitanica in New Zealand. Frontiers in Plant Science, 2021, 12, 651729.	1.7	4
47	The Use of "Genotyping-by-Sequencing―to Recover Shared Genealogy in Genetically Diverse Eucalyptus Populations. Forests, 2021, 12, 904.	0.9	4
48	Genetic Variation in Drought-Tolerance Traits and Their Relationships to Growth in Pinus radiata D. Don Under Water Stress. Frontiers in Plant Science, 2021, 12, 766803.	1.7	4
49	Genomics-Enabled Management of Genetic Resources in Radiata Pine. Forests, 2022, 13, 282.	0.9	4
50	Indication of Quantitative Multiple Disease Resistance to Foliar Pathogens in Pinus radiata D.Don in New Zealand. Frontiers in Plant Science, 2020, 11, 1044.	1.7	3
51	Title is missing!. Euphytica, 2003, 129, 147-157.	0.6	2
52	Forest Genetics for Productivity – the next generation. New Zealand Journal of Forestry Science, 2016, 46, .	0.8	2
53	A â€~Reality Check' in the Management of Tree Breeding Programmes. Forestry Sciences, 2014, , 461-479.	0.4	2
54	Comparative performance of Eucalyptus bicostata, E. globulus, E. maidenii and E. pseudoglobulus on three northern New Zealand sites. New Zealand Journal of Forestry Science, 2013, 43, 6.	0.8	1

#	Article	IF	CITATIONS
55	Chasing genetic correlation breakers to stimulate population resilience to climate change. Scientific Reports, 2022, 12, 8238.	1.6	1