Dirk Jalas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8420882/publications.pdf Version: 2024-02-01

DIDE LALAS

#	Article	IF	CITATIONS
1	Spectrally selective emitters stable up to 1400.C for thermophotovoltaic applications. , 2020, , .		Ο
2	Optical reflection from a free-carrier-induced front in a silicon slow light waveguide. , 2020, , .		0
3	Metamaterial emitter for thermophotovoltaics stable up to 1400 °C. Scientific Reports, 2019, 9, 7241.	1.6	64
4	Surface-to-Volume Ratio Drives Photoelelectron Injection from Nanoscale Gold into Electrolyte. ACS Catalysis, 2019, 9, 3366-3374.	5.5	26
5	Front-induced intraband indirect photonic transition in slow-light waveguide. , 2019, , .		1
6	Reflection from a free carrier front via an intraband indirect photonic transition. Nature Communications, 2018, 9, 1447.	5.8	20
7	Reciprocity approach for calculating the Purcell effect for emission into an open optical system. Optics Express, 2018, 26, 19247.	1.7	15
8	Photonic glass for high contrast structural color. Scientific Reports, 2018, 8, 7804.	1.6	46
9	Ewald sphere construction for structural colors. Optics Express, 2018, 26, 11352.	1.7	29
10	Emission enhancement in dielectric nanocomposites. Optics Express, 2018, 26, 16352.	1.7	2
11	Limit of efficiency of generation of hot electrons in metals and their injection inside a semiconductor using a semiclassical approach. ACS Photonics, 2018, 5, 3613-3620.	3.2	39
12	Faraday rotation in silicon waveguides. , 2017, , .		4
13	Transmission and reflection from a free carrier front in a silicon slow light waveguide. , 2017, , .		3
14	Single mode thermal emission. Optics Express, 2015, 23, 27672.	1.7	16
15	Mechanism that governs the electro-optic response of second-order nonlinear polymers on silicon substrates. Optical Materials Express, 2015, 5, 1653.	1.6	9
16	Three port optical circulators with ring resonators. , 2014, , .		1
17	Pulse compression and broadening by reflection from a moving front of a photonic crystal. Optics Express, 2014, 22, 13280.	1.7	15
18	Effective medium model for the spectral properties of nanoporous gold in the visible. Applied Physics Letters, 2014, 105, .	1.5	27

DIRK JALAS

#	Article	IF	CITATIONS
19	Optical three-port circulators made with ring resonators. Optics Letters, 2014, 39, 1425.	1.7	20
20	What is $\hat{a} \in \mathbb{C}^{n}$ and what is not $\hat{a} \in \mathbb{C}^{n}$ an optical isolator. Nature Photonics, 2013, 7, 579-582.	15.6	712
21	Comment on "Nonreciprocal Light Propagation in a Silicon Photonic Circuit― Science, 2012, 335, 38-38.	6.0	114
22	Theory of gyrotropic ring resonators with counterpropagating modes coupling. Photonics and Nanostructures - Fundamentals and Applications, 2011, 9, 351-357.	1.0	2
23	Experimental demonstration of magneto-optical phase shift in silicon on insulator waveguides. , 2011, ,		0
24	Backscattering suppression in nonreciprocal ring resonators. , 2010, , .		0
25	Resonance splitting in gyrotropic ring resonators. Optics Letters, 2010, 35, 3438.	1.7	23
26	Nonreciprocal silicon waveguides and ring resonators with gyrotropic cladding. , 2010, , .		2
27	Integrated Non Reciprocal Ring Resonators. Advanced Materials Research, 0, 216, 533-538.	0.3	Ο