
Cristina M RamÃ-rez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8420783/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Posttranscriptional Regulation of Insulin Resistance: Implications for Metabolic Diseases. Biomolecules, 2022, 12, 208.	4.0	17
2	A Common Variant at the 3'untranslated Region of the CCL7 Gene (rs17735770) Is Associated With Decreased Susceptibility to Coronary Heart Disease. Frontiers in Cardiovascular Medicine, 2022, 9, .	2.4	1
3	Cellular and Molecular Mechanisms Underlying Glioblastoma and Zebrafish Models for the Discovery of New Treatments. Cancers, 2021, 13, 1087.	3.7	16
4	Crosstalk Between LXR and Caveolin-1 Signaling Supports Cholesterol Efflux and Anti-InflammatoryÂPathwaysÂin Macrophages. Frontiers in Endocrinology, 2021, 12, 635923.	3.5	9
5	miR-27b Modulates Insulin Signaling in Hepatocytes by Regulating Insulin Receptor Expression. International Journal of Molecular Sciences, 2020, 21, 8675.	4.1	14
6	BMP-9 and LDL crosstalk regulates ALK-1 endocytosis and LDL transcytosis in endothelial cells. Journal of Biological Chemistry, 2020, 295, 18179-18188.	3.4	25
7	Cav-1 (Caveolin-1) Deficiency Increases Autophagy in the Endothelium and Attenuates Vascular Inflammation and Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 1510-1522.	2.4	75
8	MicroRNA 7 Impairs Insulin Signaling and Regulates A <i>β</i> Levels through Posttranscriptional Regulation of the Insulin Receptor Substrate 2, Insulin Receptor, Insulin-Degrading Enzyme, and Liver X Receptor Pathway. Molecular and Cellular Biology, 2019, 39, .	2.3	51
9	Caveolin-1 Regulates Atherogenesis by Attenuating Low-Density Lipoprotein Transcytosis and Vascular Inflammation Independently of Endothelial Nitric Oxide Synthase Activation. Circulation, 2019, 140, 225-239.	1.6	100
10	Circulating MicroRNA-122 Is Associated With the Risk of New-Onset Metabolic Syndrome and Type 2 Diabetes. Diabetes, 2017, 66, 347-357.	0.6	199
11	Hypothalamic Ventromedial Lin28a Enhances Glucose Metabolism in Diet-Induced Obesity. Diabetes, 2017, 66, 2102-2111.	0.6	16
12	Macrophage deficiency of miRâ€21 promotes apoptosis, plaque necrosis, and vascular inflammation during atherogenesis. EMBO Molecular Medicine, 2017, 9, 1244-1262.	6.9	155
13	Genome-wide RNAi screen reveals ALK1 mediates LDL uptake and transcytosis in endothelial cells. Nature Communications, 2016, 7, 13516.	12.8	115
14	ANGPTL4 deficiency in haematopoietic cells promotes monocyte expansion and atherosclerosis progression. Nature Communications, 2016, 7, 12313.	12.8	71
15	Inhibition of herpes simplex virus type 1 by the CDK6 inhibitor PD-0332991 (palbociclib) through the control of SAMHD1. Journal of Antimicrobial Chemotherapy, 2016, 71, 387-394.	3.0	39
16	miR-27b inhibits LDLR and ABCA1 expression but does not influence plasma and hepatic lipid levels in mice. Atherosclerosis, 2015, 243, 499-509.	0.8	53
17	Hematopoietic Akt2 deficiency attenuates the progression of atherosclerosis. FASEB Journal, 2015, 29, 597-610.	0.5	35
18	Genome-wide identification of microRNAs regulating cholesterol and triglyceride homeostasis. Nature Medicine, 2015, 21, 1290-1297.	30.7	214

CRISTINA M RAMÃREZ

#	Article	IF	CITATIONS
19	MicroRNA-148a regulates LDL receptor and ABCA1 expression to control circulating lipoprotein levels. Nature Medicine, 2015, 21, 1280-1289.	30.7	203
20	microRNA-33 Regulates ApoE Lipidation and Amyloid-β Metabolism in the Brain. Journal of Neuroscience, 2015, 35, 14717-14726.	3.6	104
21	Longâ€ŧerm therapeutic silencing of miRâ€33 increases circulating triglyceride levels and hepatic lipid accumulation in mice. EMBO Molecular Medicine, 2014, 6, 1133-1141.	6.9	127
22	Relevance of microRNA in metabolic diseases. Critical Reviews in Clinical Laboratory Sciences, 2014, 51, 305-320.	6.1	41
23	RNA binding protein HuR regulates the expression of ABCA1. Journal of Lipid Research, 2014, 55, 1066-1076.	4.2	33
24	microRNAs and HDL life cycle. Cardiovascular Research, 2014, 103, 414-422.	3.8	47
25	MiR-143/145 deficiency attenuates the progression of atherosclerosis in Ldlr-/- mice. Thrombosis and Haemostasis, 2014, 112, 796-802.	3.4	87
26	Nontelomeric Role for Rap1 in Regulating Metabolism and Protecting against Obesity. Cell Reports, 2013, 3, 1847-1856.	6.4	89
27	MicroRNAs in Metabolic Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 178-185.	2.4	222
28	Therapeutic Silencing of MicroRNA-33 Inhibits the Progression of Atherosclerosis in <i>Ldlr</i> ^{â^'/â^'} Mice—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 1973-1977.	2.4	159
29	Control of Cholesterol Metabolism and Plasma High-Density Lipoprotein Levels by microRNA-144. Circulation Research, 2013, 112, 1592-1601.	4.5	187
30	MicroRNA 33 Regulates Glucose Metabolism. Molecular and Cellular Biology, 2013, 33, 2891-2902.	2.3	139
31	A Regulatory Role for MicroRNA 33* in Controlling Lipid Metabolism Gene Expression. Molecular and Cellular Biology, 2013, 33, 2339-2352.	2.3	128
32	MiR-155 Has a Protective Role in the Development of Non-Alcoholic Hepatosteatosis in Mice. PLoS ONE, 2013, 8, e72324.	2.5	105
33	Mir-33 regulates cell proliferation and cell cycle progression. Cell Cycle, 2012, 11, 922-933.	2.6	150
34	miR-106b impairs cholesterol efflux and increases AÎ ² levels by repressing ABCA1 expression. Experimental Neurology, 2012, 235, 476-483.	4.1	161
35	MicroRNA-758 Regulates Cholesterol Efflux Through Posttranscriptional Repression of ATP-Binding Cassette Transporter A1. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2707-2714.	2.4	218
36	"Micromanaging―metabolic syndrome. Cell Cycle, 2011, 10, 3249-3252.	2.6	23

CRISTINA M RAMÃREZ

#	Article	IF	CITATIONS
37	Two-tiered Approach Identifies a Network of Cancer and Liver Disease-related Genes Regulated by miR-122. Journal of Biological Chemistry, 2011, 286, 18066-18078.	3.4	54
38	miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proceedings of the United States of America, 2011, 108, 9232-9237.	7.1	615
39	Apoptotic Cells Promote Their Own Clearance and Immune Tolerance through Activation of the Nuclear Receptor LXR. Immunity, 2009, 31, 245-258.	14.3	564
40	VDAC and ERα interaction in caveolae from human cortex is altered in Alzheimer's disease. Molecular and Cellular Neurosciences, 2009, 42, 172-183.	2.2	83
41	Modulation of AÎ2-induced neurotoxicity by estrogen receptor alpha and other associated proteins in lipid rafts. Steroids, 2008, 73, 992-996.	1.8	37
42	Voltage-dependent anion channel (VDAC) participates in amyloid beta-induced toxicity and interacts with plasma membrane estrogen receptor î± in septal and hippocampal neurons. Molecular Membrane Biology, 2007, 24, 148-160.	2.0	82
43	Alternative estrogen receptors homologous to classical receptor α in murine neural tissues. Neuroscience Letters, 2006, 395, 7-11.	2.1	28
44	Disturbance of Motor Imagery After Cerebellar Stroke Behavioral Neuroscience, 2005, 119, 622-626.	1.2	46
45	Estrogen Activates Classical and Alternative Mechanisms to Orchestrate Neuroprotection. Current Neurovascular Research, 2005, 2, 287-301.	1.1	72
46	Acute relaxation of mouse duodenun by estrogens. European Journal of Pharmacology, 2004, 501, 161-178.	3.5	11
47	Regulation of L-alanine transport systems A and ASC by cyclic AMP and calcium in a reptilian duodenal model. Journal of Experimental Biology, 2003, 206, 1589-1598.	1.7	2