
Dennis E Bulman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8420467/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Estimate of the contemporary live-birth prevalence of recurrent 22q11.2 deletions: a cross-sectional analysis from population-based newborn screening. CMAJ Open, 2021, 9, E802-E809.	2.4	65
2	Time-dependent decline of T-cell receptor excision circle levels in ZAP-70 deficiency. Journal of Allergy and Clinical Immunology: in Practice, 2020, 8, 806-808.e2.	3.8	10
3	A Case Report of Myoclonus-Dystonia with Isolated Myoclonus Phenotype and Novel Mutation Successfully Treated with Deep Brain Stimulation. Neurology and Therapy, 2020, 9, 187-191.	3.2	4
4	Genotypes of chronic progressive external ophthalmoplegia in a large adult-onset cohort. Mitochondrion, 2019, 49, 227-231.	3.4	20
5	Genetic Variation in the Ontario Neurodegenerative Disease Research Initiative. Canadian Journal of Neurological Sciences, 2019, 46, 491-498.	0.5	7
6	Ataxia Telangiectasia Diagnosed on Newborn Screening–Case Cohort of 5 Years' Experience. Frontiers in Immunology, 2019, 10, 2940.	4.8	37
7	An evaluation of genetic causes and environmental risks for bilateral optic atrophy. PLoS ONE, 2019, 14, e0225656.	2.5	9
8	Effects of fat mass and obesity-associated (FTO) gene polymorphisms on binge eating in women with binge-eating disorder: The moderating influence of attachment style. Nutrition, 2019, 61, 208-212.	2.4	12
9	An evaluation of genetic causes and environmental risks for bilateral optic atrophy. , 2019, 14, e0225656.		0
10	An evaluation of genetic causes and environmental risks for bilateral optic atrophy. , 2019, 14, e0225656.		0
11	An evaluation of genetic causes and environmental risks for bilateral optic atrophy. , 2019, 14, e0225656.		0
12	An evaluation of genetic causes and environmental risks for bilateral optic atrophy. , 2019, 14, e0225656.		0
13	Targeted Next-generation Sequencing and Bioinformatics Pipeline to Evaluate Genetic Determinants of Constitutional Disease. Journal of Visualized Experiments, 2018, , .	0.3	17
14	T-cell receptor excision circle levels and safety of paediatric immunization: A population-based self-controlled case series analysis. Human Vaccines and Immunotherapeutics, 2018, 14, 1378-1391.	3.3	3
15	Genomic DNA Methylation Signatures Enable Concurrent Diagnosis and Clinical Genetic Variant Classification in Neurodevelopmental Syndromes. American Journal of Human Genetics, 2018, 102, 156-174.	6.2	135
16	A family segregating lethal neonatal coenzyme Q ₁₀ deficiency caused by mutations in COQ9. Journal of Inherited Metabolic Disease, 2018, 41, 719-729.	3.6	30
17	BAFopathies' DNA methylation epi-signatures demonstrate diagnostic utility and functional continuum of Coffin–Siris and Nicolaides–Baraitser syndromes. Nature Communications, 2018, 9, 4885.	12.8	83
18	Compound heterozygous mutations in the gene PIGP are associated with early infantile epileptic encephalopathy. Human Molecular Genetics, 2017, 26, 1706-1715.	2.9	39

DENNIS E BULMAN

#	Article	IF	CITATIONS
19	<i>KMT2D</i> p.Gln3575His segregating in a family with autosomal dominant choanal atresia strengthens the Kabuki/CHARGE connection. American Journal of Medical Genetics, Part A, 2017, 173, 183-189.	1.2	15
20	A novel multisystem disease associated with recessive mutations in the tyrosylâ€ŧRNA synthetase (<i>YARS</i>) gene. American Journal of Medical Genetics, Part A, 2017, 173, 126-134.	1.2	36
21	Mandibulofacial Dysostosis with Microcephaly: Mutation and Database Update. Human Mutation, 2016, 37, 148-154.	2.5	45
22	The defining DNA methylation signature of Floating-Harbor Syndrome. Scientific Reports, 2016, 6, 38803.	3.3	55
23	The ONDRISeq panel: custom-designed next-generation sequencing of genes related to neurodegeneration. Npj Genomic Medicine, 2016, 1, 16032.	3.8	26
24	Voluntary Running Triggers VGF-Mediated Oligodendrogenesis to Prolong the Lifespan of Snf2h-Null Ataxic Mice. Cell Reports, 2016, 17, 862-875.	6.4	39
25	Severe Neonatal Presentation of Mitochondrial Citrate Carrier (SLC25A1) Deficiency. JIMD Reports, 2016, 30, 73-79.	1.5	21
26	Next-generation sequencing for diagnosis of rare diseases in the neonatal intensive care unit. Cmaj, 2016, 188, E254-E260.	2.0	86
27	Severe connective tissue laxity including aortic dilatation in Sotos syndrome. American Journal of Medical Genetics, Part A, 2016, 170, 531-535.	1.2	9
28	Syndrome disintegration: Exome sequencing reveals that Fitzsimmons syndrome is a coâ€occurrence of multiple events. American Journal of Medical Genetics, Part A, 2016, 170, 1820-1825.	1.2	19
29	Mutations in the glucocerebrosidase gene are common in patients with Parkinson's disease from Eastern Canada. International Journal of Neuroscience, 2016, 126, 415-421.	1.6	27
30	Resolution of refractory hypotension and anuria in a premature newborn with lossâ€ofâ€function of ACE. American Journal of Medical Genetics, Part A, 2015, 167, 1654-1658.	1.2	10
31	Meconium ileus in a Lebanese family secondary to mutations in the GUCY2C gene. European Journal of Human Genetics, 2015, 23, 990-992.	2.8	24
32	Congenital Visual Impairment and Progressive Microcephaly Due to Lysyl–Transfer Ribonucleic Acid (RNA) Synthetase (<i>KARS</i>) Mutations. Journal of Child Neurology, 2015, 30, 1037-1043.	1.4	47
33	Two novel disease-causing variants in BMPR1B are associated with brachydactyly type A1. European Journal of Human Genetics, 2015, 23, 1640-1645.	2.8	17
34	Autosomal recessive axonal polyneuropathy in a sibling pair due to a novel homozygous mutation in IGHMBP2. Neuromuscular Disorders, 2015, 25, 794-799.	0.6	16
35	Homozygous nonsense mutation in SYNJ1 associated with intractable epilepsy and tau pathology. Neurobiology of Aging, 2015, 36, 1222.e1-1222.e5.	3.1	50
36	Mutations in the enzyme glutathione peroxidase 4 cause Sedaghatian-type spondylometaphyseal dysplasia. Journal of Medical Genetics, 2014, 51, 470-474.	3.2	64

DENNIS E BULMAN

#	Article	IF	CITATIONS
37	FORGE Canada Consortium: Outcomes of a 2-Year National Rare-Disease Gene-Discovery Project. American Journal of Human Genetics, 2014, 94, 809-817.	6.2	219
38	The PARLance of Parkinson disease. Autophagy, 2011, 7, 790-792.	9.1	7
39	17p13.3 microduplications are associated with split-hand/foot malformation and long-bone deficiency (SHFLD). European Journal of Human Genetics, 2011, 19, 1144-1151.	2.8	32
40	Mutations in GDF5 presenting as semidominant brachydactyly A1. Human Mutation, 2010, 31, 1155-1162.	2.5	23
41	Brachydactyly A-1 mutations restricted to the central region of the N-terminal active fragment of Indian Hedgehog. European Journal of Human Genetics, 2009, 17, 1112-1120.	2.8	46
42	Large deletions account for an increasing number of mutations in <i>SGCE</i> . Movement Disorders, 2008, 23, 456-460.	3.9	27
43	A Nurr1 point mutant, implicated in Parkinson's disease, uncouples ERK1/2-dependent regulation of tyrosine hydroxylase transcription. Neurobiology of Disease, 2008, 29, 117-122.	4.4	43
44	Refinement of the DYT15 locus in myoclonus dystonia. Movement Disorders, 2007, 22, 888-892.	3.9	41
45	Translated mutation in the Nurr1 gene as a cause for Parkinson's disease. Movement Disorders, 2006, 21, 906-909.	3.9	93
46	A century later Farabee has his mutation. Human Genetics, 2005, 117, 285-7.	3.8	12
47	A novel mutation in the IHH gene causes brachydactyly type A1: a 95-year-old mystery resolved. Human Genetics, 2002, 111, 368-375.	3.8	42
48	Evidence Favoring Genetic Heterogeneity for Febrile Convulsions. Epilepsia, 2000, 41, 132-139.	5.1	17
49	An approach to ascertain probands with a non-traditional risk factor for carotid atherosclerosis. Atherosclerosis, 1999, 144, 429-434.	0.8	78
50	Familial Hemiplegic Migraine and Episodic Ataxia Type-2 Are Caused by Mutations in the Ca2+ Channel Gene CACNL1A4. Cell, 1996, 87, 543-552.	28.9	2,287
51	A full genome search in multiple sclerosis. Nature Genetics, 1996, 13, 472-476.	21.4	638
52	Mapping the gene for acetazolamide responsive hereditary paryoxysmal cerebellar ataxia to chromosome 19p. Human Molecular Genetics, 1995, 4, 279-284.	2.9	102
53	Dystrophin expression in the human retina is required for normal function as defined by electroretinography. Nature Genetics, 1993, 4, 82-86.	21.4	151
54	Sarcolemmal distribution of abnormal dystrophin in Xp21 carriers. Neuromuscular Disorders, 1993, 3, 135-140.	0.6	3

DENNIS E BULMAN

#	Article	IF	CITATIONS
55	Characterization of translational frame exception patients in Duchenne/Becker muscular dystrophy. Human Molecular Genetics, 1993, 2, 737-744.	2.9	89
56	Genomic organization of exons 22 to 25 of the dystrophin gene. Human Molecular Genetics, 1993, 2, 593-594.	2.9	7
57	Frameshift duplication resulting in truncated dystrophin in a patient with Duchenne muscular dystrophy. Human Mutation, 1992, 1, 172-173.	2.5	1
58	Additional dystrophin fragment in Becker muscular dystrophy patients: Correlation with the pattern of DNA deletion. American Journal of Medical Genetics Part A, 1992, 44, 382-384.	2.4	9
59	Point mutation in the human dystrophin gene: Identification through Western blot analysis. Genomics, 1991, 10, 457-460.	2.9	74
60	Dystrophin is tightly associated with the sarcolemma of mammalian skeletal muscle fibers. Experimental Cell Research, 1991, 192, 278-288.	2.6	37
61	Screening of male patients with autosomal recessive Duchenne dystrophy through dystrophin and DNA studies. American Journal of Medical Genetics Part A, 1991, 39, 38-41.	2.4	15
62	Age-Related Conversion of Dystrophin-Negative to -Positive Fiber Segments of Skeletal but not Cardiac Muscle Fibers in Heterozygote mdx Mice. Journal of Neuropathology and Experimental Neurology, 1990, 49, 96-105.	1.7	48
63	Dystrophin is localized to the plasma membrane of human skeletal muscle fibers by electron-microscopic cytochemical study. Muscle and Nerve, 1990, 13, 376-380.	2.2	59
64	The Duchenne muscular dystrophy gene product is localized in sarcolemma of human skeletal muscle. Nature, 1988, 333, 466-469.	27.8	650
65	A Population-Based Study of Multiple Sclerosis in Twins. New England Journal of Medicine, 1986, 315, 1638-1642.	27.0	579
66	Case of 22q11.2 Deletion Syndrome Not Identified by <i>TBX1</i> Screening with a Positive SCID Newborn Screen. LymphoSign Journal, 0, , .	0.2	0