Damian E Helbling

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8420317/damian-e-helbling-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

66
papers3,841
citations31
h-index61
g-index70
ext. papers4,713
ext. citations10.1
avg, IF5.98
L-index

#	Paper	IF	Citations
66	Microbial biotransformation of aqueous film-forming foam derived polyfluoroalkyl substances <i>Science of the Total Environment</i> , 2022 , 824, 153711	10.2	3
65	Target and suspect screening for biocides in drinking water resources of Honduras. <i>H2Open Journal</i> , 2022 , 5, 84-97	1.4	
64	Engineering of managed aquifer recharge systems to optimize biotransformation of trace organic chemicals. <i>Current Opinion in Environmental Science and Health</i> , 2022 , 27, 100343	8.1	1
63	Identifying the physicochemical properties of Etyclodextrin polymers that determine the adsorption of perfluoroalkyl acids <i>Water Research</i> , 2021 , 209, 117938	12.5	2
62	Environmental Source Tracking of Per- and Polyfluoroalkyl Substances within a Forensic Context: Current and Future Techniques. <i>Environmental Science & Environmental Science </i>	10.3	10
61	Evaluation, optimization, and application of three independent suspect screening workflows for the characterization of PFASs in water. <i>Environmental Sciences: Processes and Impacts</i> , 2021 , 23, 1554-15	i 6 5	2
60	Target and Nontarget Analysis of Per- and Polyfluoralkyl Substances in Wastewater from Electronics Fabrication Facilities. <i>Environmental Science & Electronics Fabrication Facilities</i> . <i>Environmental Science & Electronics Fabrication Facilities</i> . <i>Environmental Science & Electronics Fabrication Facilities</i> .	10.3	23
59	Exploring the factors that influence the adsorption of anionic PFAS on conventional and emerging adsorbents in aquatic matrices. <i>Water Research</i> , 2020 , 182, 115950	12.5	27
58	Evaluating the effects of water matrix constituents on micropollutant removal by activated carbon and Eyclodextrin polymer adsorbents. <i>Water Research</i> , 2020 , 173, 115551	12.5	21
57	Clustering micropollutants based on initial biotransformations for improved prediction of micropollutant removal during conventional activated sludge treatment. <i>Environmental Science:</i> Water Research and Technology, 2020 , 6, 554-565	4.2	11
56	Exploring the Specificity of Extracellular Wastewater Peptidases to Improve the Design of Sustainable Peptide-Based Antibiotics. <i>Environmental Science & Environmental Scienc</i>	10.3	О
55	Evaluating the Removal of Per- and Polyfluoroalkyl Substances from Contaminated Groundwater with Different Adsorbents Using a Suspect Screening Approach. <i>Environmental Science and Technology Letters</i> , 2020 , 7, 954-960	11	14
54	Best Practices for Evaluating New Materials as Adsorbents for Water Treatment 2020 , 2, 1532-1544		18
53	Impact of Hurricane Maria on Drinking Water Quality in Puerto Rico. <i>Environmental Science & Environmental Science & Technology</i> , 2020 , 54, 9495-9509	10.3	11
52	ECyclodextrin Polymers with Different Cross-Linkers and Ion-Exchange Resins Exhibit Variable Adsorption of Anionic, Zwitterionic, and Nonionic PFASs. <i>Environmental Science & Environmental Science &</i>	10.3	22
51	Cyclodextrin Polymers with Nitrogen-Containing Tripodal Crosslinkers for Efficient PFAS Adsorption 2020 , 2, 1240-1245		26
50	Polymerized Molecular Receptors as Adsorbents to Remove Micropollutants from Water. <i>Accounts of Chemical Research</i> , 2020 , 53, 2314-2324	24.3	23

49	ECyclodextrin Polymers on Microcrystalline Cellulose as a Granular Media for Organic Micropollutant Removal from Water. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 8089-8096	9.5	35
48	Reduction of a Tetrafluoroterephthalonitrile-ECyclodextrin Polymer to Remove Anionic Micropollutants and Perfluorinated Alkyl Substances from Water. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 12049-12053	16.4	63
47	Reduction of a Tetrafluoroterephthalonitrile-ECyclodextrin Polymer to Remove Anionic Micropollutants and Perfluorinated Alkyl Substances from Water. <i>Angewandte Chemie</i> , 2019 , 131, 1217	721218	3 ²²
46	Surface water and groundwater analysis using aryl hydrocarbon and endocrine receptor biological assays and liquid chromatography-high resolution mass spectrometry in Susquehanna County, PA. <i>Environmental Sciences: Processes and Impacts</i> , 2019 , 21, 988-998	4.3	2
45	Cross-linker Chemistry Determines the Uptake Potential of Perfluorinated Alkyl Substances by ECyclodextrin Polymers. <i>Macromolecules</i> , 2019 , 52, 3747-3752	5.5	38
44	Exploring co-occurrence patterns between organic micropollutants and bacterial community structure in a mixed-use watershed. <i>Environmental Sciences: Processes and Impacts</i> , 2019 , 21, 867-880	4.3	8
43	Modelling carbofuran biotransformation by Novosphingobium sp. KN65.2 in the presence of coincidental carbon and indigenous microbes. <i>Environmental Science: Water Research and Technology</i> , 2019 , 5, 798-807	4.2	3
42	Biotransformation of antibiotics: Exploring the activity of extracellular and intracellular enzymes derived from wastewater microbial communities. <i>Water Research</i> , 2019 , 155, 115-123	12.5	27
41	QSARs to predict adsorption affinity of organic micropollutants for activated carbon and Etyclodextrin polymer adsorbents. <i>Water Research</i> , 2019 , 154, 217-226	12.5	32
40	Exploring matrix effects and quantifying organic additives in hydraulic fracturing associated fluids using liquid chromatography electrospray ionization mass spectrometry. <i>Environmental Sciences: Processes and Impacts</i> , 2019 , 21, 195-205	4.3	10
39	Fall Creek Monitoring Station: Using Environmental Covariates To Predict Micropollutant Dynamics and Peak Events in Surface Water Systems. <i>Environmental Science & Events (Mater Systems)</i> , 53, 8599-867	10 ^{0.3}	13
38	Fall Creek Monitoring Station: Highly Resolved Temporal Sampling to Prioritize the Identification of Nontarget Micropollutants in a Small Stream. <i>Environmental Science & Environmental Science & Env</i>	10.3	31
37	Tetrafluoroterephthalonitrile-crosslinked Eyclodextrin polymers for efficient extraction and recovery of organic micropollutants from water. <i>Journal of Chromatography A</i> , 2018 , 1541, 52-56	4.5	28
36	Widespread Micropollutant Monitoring in the Hudson River Estuary Reveals Spatiotemporal Micropollutant Clusters and Their Sources. <i>Environmental Science & Environmental Scie</i>	6 ^{0.3}	52
35	Evaluating the environmental parameters that determine aerobic biodegradation half-lives of pesticides in soil with a multivariable approach. <i>Chemosphere</i> , 2018 , 209, 430-438	8.4	21
34	Phenolation of cyclodextrin polymers controls their lead and organic micropollutant adsorption. <i>Chemical Science</i> , 2018 , 9, 8883-8889	9.4	39
33	Removal of GenX and Perfluorinated Alkyl Substances from Water by Amine-Functionalized Covalent Organic Frameworks. <i>Journal of the American Chemical Society</i> , 2018 , 140, 12677-12681	16.4	165
32	Removal of micropollutants in biofilters: Hydrodynamic effects on biofilm assembly and functioning. <i>Water Research</i> , 2017 , 120, 211-221	12.5	24

31	Benchmarking Micropollutant Removal by Activated Carbon and Porous Ecyclodextrin Polymers under Environmentally Relevant Scenarios. <i>Environmental Science & Discourse (Carbonology)</i> , 2017 , 51, 7590-759	98 ^{0.3}	82
30	Ecyclodextrin Polymer Network Sequesters Perfluorooctanoic Acid at Environmentally Relevant Concentrations. <i>Journal of the American Chemical Society</i> , 2017 , 139, 7689-7692	16.4	184
29	Emerging analytical methods for the characterization and quantification of organic contaminants in flowback and produced water. <i>Trends in Environmental Analytical Chemistry</i> , 2017 , 15, 12-23	12	42
28	Relative contribution of ammonia oxidizing bacteria and other members of nitrifying activated sludge communities to micropollutant biotransformation. <i>Water Research</i> , 2017 , 109, 217-226	12.5	87
27	Emerging investigators series: prioritization of suspect hits in a sensitive suspect screening workflow for comprehensive micropollutant characterization in environmental samples. <i>Environmental Science: Water Research and Technology</i> , 2017 , 3, 54-65	4.2	35
26	Control of Pharmaceuticals, Personal Care Products, and Other Micropollutants: Probing the Ability of Restored Riparian Systems to Remove Trace Pollutants. <i>Proceedings of the Water Environment Federation</i> , 2017 , 2017, 3537-3550		
25	A non-target approach to identify disinfection byproducts of structurally similar sulfonamide antibiotics. <i>Water Research</i> , 2016 , 102, 241-251	12.5	31
24	Systematic Exploration of Biotransformation Reactions of Amine-Containing Micropollutants in Activated Sludge. <i>Environmental Science & Environmental </i>	10.3	80
23	Rapid removal of organic micropollutants from water by a porous Eyclodextrin polymer. <i>Nature</i> , 2016 , 529, 190-4	50.4	1038
22	Biotransformation of Two Pharmaceuticals by the Ammonia-Oxidizing Archaeon Nitrososphaera gargensis. <i>Environmental Science & Environmental Science & </i>	10.3	47
21	A framework for establishing predictive relationships between specific bacterial 16S rRNA sequence abundances and biotransformation rates. <i>Water Research</i> , 2015 , 70, 471-84	12.5	21
20	Can meta-omics help to establish causality between contaminant biotransformations and genes or gene products?. <i>Environmental Science: Water Research and Technology</i> , 2015 , 1, 272-278	4.2	21
19	Bioremediation of pesticide-contaminated water resources: the challenge of low concentrations. <i>Current Opinion in Biotechnology</i> , 2015 , 33, 142-8	11.4	47
18	The functional and taxonomic richness of wastewater treatment plant microbial communities are associated with each other and with ambient nitrogen and carbon availability. <i>Environmental Microbiology</i> , 2015 , 17, 4851-60	5.2	49
17	Association of biodiversity with the rates of micropollutant biotransformations among full-scale wastewater treatment plant communities. <i>Applied and Environmental Microbiology</i> , 2015 , 81, 666-75	4.8	75
16	Kinetics and yields of pesticide biodegradation at low substrate concentrations and under conditions restricting assimilable organic carbon. <i>Applied and Environmental Microbiology</i> , 2014 , 80, 130	16 ⁴ 13	28
15	Emerging chemicals and the evolution of biodegradation capacities and pathways in bacteria. <i>Current Opinion in Biotechnology</i> , 2014 , 27, 8-14	11.4	64
14	pH-dependent biotransformation of ionizable organic micropollutants in activated sludge. <i>Environmental Science & Discourse (Marchael Science and Scie</i>	10.3	50

LIST OF PUBLICATIONS

13	biotransformation, and DNA adduct formation in a liver cell model. <i>Chemical Research in Toxicology</i> , 2014 , 27, 443-53	4	31
12	Genetic and metabolic analysis of the carbofuran catabolic pathway in Novosphingobium sp. KN65.2. <i>Applied Microbiology and Biotechnology</i> , 2014 , 98, 8235-52	5.7	42
11	A model framework to describe growth-linked biodegradation of trace-level pollutants in the presence of coincidental carbon substrates and microbes. <i>Environmental Science & Environmental Science & </i>	10.3	13
10	Is biological treatment a viable alternative for micropollutant removal in drinking water treatment processes?. <i>Water Research</i> , 2013 , 47, 5955-76	12.5	217
9	The activity level of a microbial community function can be predicted from its metatranscriptome. <i>ISME Journal</i> , 2012 , 6, 902-4	11.9	58
8	Micropollutant biotransformation kinetics associate with WWTP process parameters and microbial community characteristics. <i>Environmental Science & Environmental Science & Env</i>	10.3	134
7	Chlorine Residual Management for Water Distribution System Security 2011 , 185-203		
6	High-throughput identification of microbial transformation products of organic micropollutants. <i>Environmental Science & Environmental Science & Envir</i>	10.3	207
5	Structure-based interpretation of biotransformation pathways of amide-containing compounds in sludge-seeded bioreactors. <i>Environmental Science & Environmental & Envi</i>	10.3	80
4	A tiered procedure for assessing the formation of biotransformation products of pharmaceuticals and biocides during activated sludge treatment. <i>Journal of Environmental Monitoring</i> , 2010 , 12, 2100-11		104
3	Modeling Residual Chlorine Response to a Microbial Contamination Event in Drinking Water Distribution Systems. <i>Journal of Environmental Engineering, ASCE</i> , 2009 , 135, 918-927	2	39
2	Continuous monitoring of residual chlorine concentrations in response to controlled microbial intrusions in a laboratory-scale distribution system. <i>Water Research</i> , 2008 , 42, 3162-72	12.5	36
1	Free chlorine demand and cell survival of microbial suspensions. Water Research, 2007, 41, 4424-34	12.5	67