
NatÃilia Barbosa Carvalho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8419674/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Role of NK Cells in the Control of Viral Infection in HTLV-1 Carriers. Journal of Immunology Research, 2019, 2019, 1-9.	0.9	9
2	Local and systemic production of proinflammatory chemokines in the pathogenesis of HAM/TSP. Cellular Immunology, 2018, 334, 70-77.	1.4	9
3	Association of Tuberculosis Status with Neurologic Disease and Immune Response in HTLV-1 Infection. AIDS Research and Human Retroviruses, 2017, 33, 1126-1133.	0.5	6
4	In VitroImmunomodulatory Activity of a Transition-State Analog Inhibitor of Human Purine Nucleoside Phosphorylase in Cutaneous Leishmaniasis. Journal of Immunology Research, 2017, 2017, 1-6.	0.9	3
5	Association of Sicca Syndrome with Proviral Load and Proinflammatory Cytokines in HTLV-1 Infection. Journal of Immunology Research, 2016, 2016, 1-6.	0.9	20
6	Inflammatory and immunological profiles in patients with COPD: relationship with FEV 1 reversibility. Jornal Brasileiro De Pneumologia, 2016, 42, 241-247.	0.4	13
7	5-Lipoxygenase Negatively Regulates Th1 Response during Brucella abortus Infection in Mice. Infection and Immunity, 2015, 83, 1210-1216.	1.0	24
8	Nucleotide-binding oligomerization domain-2 (NOD2) regulates type-1 cytokine responses to Mycobacterium avium but is not required for host control of infection. Microbes and Infection, 2015, 17, 337-344.	1.0	7
9	Neurological Manifestations in Human T-Cell Lymphotropic Virus Type 1 (HTLV-1)–Infected Individuals Without HTLV-1–Associated Myelopathy/Tropical Spastic Paraparesis: A Longitudinal Cohort Study. Clinical Infectious Diseases, 2015, 61, 49-56.	2.9	70
10	Functional Activity of Monocytes and Macrophages in HTLV-1 Infected Subjects. PLoS Neglected Tropical Diseases, 2014, 8, e3399.	1.3	15
11	Key Role of Toll-Like Receptor 2 in the Inflammatory Response and Major Histocompatibility Complex Class II Downregulation in Brucella abortus-Infected Alveolar Macrophages. Infection and Immunity, 2014, 82, 626-639.	1.0	33
12	Immunologic Response and Proviral Load in Human T-lymphotropic Virus Type 1 Infected Individuals With Erectile Dysfunction. Urology, 2013, 81, 1261-1264.	0.5	1
13	Tollâ€like receptor 6 senses <i><scp>M</scp>ycobacterium avium</i> and is required for efficient control of mycobacterial infection. European Journal of Immunology, 2013, 43, 2373-2385.	1.6	27
14	Lack of Endogenous IL-10 Enhances Production of Proinflammatory Cytokines and Leads to Brucella abortus Clearance in Mice. PLoS ONE, 2013, 8, e74729.	1.1	59
15	Nucleotide-Binding Oligomerization Domain-1 and -2 Play No Role in ControllingBrucella abortusInfection in Mice. Clinical and Developmental Immunology, 2012, 2012, 1-5.	3.3	15
16	Update on the role of innate immune receptors during Brucella abortus infection. Veterinary Immunology and Immunopathology, 2012, 148, 129-135.	0.5	22
17	Host Susceptibility to <i>Brucella abortus</i> Infection Is More Pronounced in IFN- <i>γ</i> knockout than IL-12/ <i>β</i> 2-Microglobulin Double-Deficient Mice. Clinical and Developmental Immunology, 2012, 2012, 1-7.	3.3	45
18	A Role for Sigma Factor ÏfE in Corynebacterium pseudotuberculosis Resistance to Nitric Oxide/Peroxide Stress. Frontiers in Microbiology, 2012, 3, 126.	1.5	19

#	Article	IF	CITATIONS
19	MyD88 and STING Signaling Pathways Are Required for IRF3-Mediated IFN-Î ² Induction in Response to Brucella abortus Infection. PLoS ONE, 2011, 6, e23135.	1.1	66
20	Toll-Like Receptor 9 Is Required for Full Host Resistance to <i>Mycobacterium avium</i> Infection but Plays No Role in Induction of Th1 Responses. Infection and Immunity, 2011, 79, 1638-1646.	1.0	38
21	Interleukin-1 Receptor-Associated Kinase 4 Is Essential for Initial Host Control of Brucella abortus Infection. Infection and Immunity, 2011, 79, 4688-4695.	1.0	25
22	The Protein Moiety of <i>Brucella abortus</i> Outer Membrane Protein 16 Is a New Bacterial Pathogen-Associated Molecular Pattern That Activates Dendritic Cells In Vivo, Induces a Th1 Immune Response, and Is a Promising Self-Adjuvanting Vaccine against Systemic and Oral Acquired Brucellosis. Journal of Immunology, 2010, 184, 5200-5212.	0.4	63
23	The <i>Brucella abortus</i> Phosphoglycerate Kinase Mutant Is Highly Attenuated and Induces Protection Superior to That of Vaccine Strain 19 in Immunocompromised and Immunocompetent Mice. Infection and Immunity, 2010, 78, 2283-2291.	1.0	37
24	IL-12 and TNF-α production by dendritic cells stimulated with Schistosoma mansoni schistosomula tegument is TLR4- and MyD88-dependent. Immunology Letters, 2009, 125, 72-77.	1.1	27
25	The role of innate immune receptors in the control of Brucella abortus infection: Toll-like receptors and Infection, 2008, 10, 1005-1009.	1.0	71
26	Central Role of MyD88-Dependent Dendritic Cell Maturation and Proinflammatory Cytokine Production to Control <i>Brucella abortus</i> Infection. Journal of Immunology, 2008, 180, 1080-1087.	0.4	147