Alan E Fryar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8419627/publications.pdf

Version: 2024-02-01

430442 253896 1,913 57 18 43 citations h-index g-index papers 62 62 62 1464 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Predictive model for progressive salinization in a coastal aquifer using artificial intelligence and hydrogeochemical techniques: a case study of the Nile Delta aquifer, Egypt. Environmental Science and Pollution Research, 2022, 29, 9318-9340.	2.7	20
2	Assessing the spatial and temporal variations of terrestrial water storage of Iraq using GRACE satellite data and reliability–resiliency–vulnerability indicators. Arabian Journal of Geosciences, 2022, 15, 1.	0.6	4
3	Characterizing Hydrological Functioning of Three Large Karst Springs in the Salem Plateau, Missouri, USA. Hydrology, 2022, 9, 96.	1.3	3
4	Probability mapping of groundwater contamination by hydrocarbon from the deep oil reservoirs using GIS-based machine-learning algorithms: a case study of the Dammam aquifer (middle of Iraq). Environmental Science and Pollution Research, 2021, 28, 13736-13751.	2.7	5
5	Seasonal to Decadal Variability in Focused Groundwater and Contaminant Discharge along a Channelized Stream. Ground Water Monitoring and Remediation, 2021, 41, 32-45.	0.6	2
6	Variability in groundwater flow and chemistry in the Mekong River alluvial aquifer (Thailand): implications for arsenic and manganese occurrence. Environmental Earth Sciences, 2021, 80, 1.	1.3	4
7	Assessment of groundwater potential in terms of the availability and quality of the resource: a case study from Iraq. Environmental Earth Sciences, 2021, 80, 1.	1.3	15
8	Using Oxygen-18 and Deuterium to Delineate Groundwater Recharge at Different Spatial and Temporal Scales. Springer Transactions in Civil and Environmental Engineering, 2021, , 303-312.	0.3	0
9	Groundwater of carbonate aquifers. , 2021, , 23-34.		3
10	Modeling of Groundwater Potential Using Cloud Computing Platform: A Case Study from Nineveh Plain, Northern Iraq. Water (Switzerland), 2021, 13, 3330.	1.2	8
11	Differential Transport of Escherichia coli Isolates Compared to Abiotic Tracers in a Karst Aquifer. Ground Water, 2020, 58, 70-78.	0.7	8
12	Contrasting controls on hydrogeochemistry of arsenic-enriched groundwater in the homologous tectonic settings of Andean and Himalayan basin aquifers, Latin America and South Asia. Science of the Total Environment, 2019, 689, 1370-1387.	3.9	30
13	Plate tectonics influence on geogenic arsenic cycling: From primary sources to global groundwater enrichment. Science of the Total Environment, 2019, 683, 793-807.	3.9	60
14	Variable responses of karst springs to recharge in the Middle Atlas region of Morocco. Hydrogeology Journal, 2019, 27, 1693-1710.	0.9	12
15	Water in India and Kentucky: Developing an Online Curriculum with Field Experiences for High School Classes in Diverse Settings. Journal of Contemporary Water Research and Education, 2019, 168, 78-92.	0.7	O
16	Hydrological processes in glacierized high-altitude basins of the western Himalayas. Hydrogeology Journal, 2018, 26, 615-628.	0.9	20
17	Use of Molecular Markers to Compare <i>Escherichia coli</i> Transport with Traditional Groundwater Tracers in Epikarst. Journal of Environmental Quality, 2018, 47, 88-95.	1.0	6
18	Controls on high and low groundwater arsenic on the opposite banks of the lower reaches of River Ganges, Bengal basin, India. Science of the Total Environment, 2018, 645, 1371-1387.	3.9	40

#	Article	IF	Citations
19	WIIKY (WATER IN INDIA AND KENTUCKY): INTEGRATING FIELD EXPERIENCES WITH AN ONLINE PLATFORM FOR HIGH SCHOOL CLASSES., 2018,,.		1
20	Distinguishing and estimating recharge to karst springs in snow and glacier dominated mountainous basins of the western Himalaya, India. Journal of Hydrology, 2017, 550, 239-252.	2.3	34
21	Isotopes to assess sustainability of overexploited groundwater in the Souss–Massa system (Morocco). Isotopes in Environmental and Health Studies, 2017, 53, 298-312.	0.5	17
22	Controls on groundwater quality and dug-well asphyxiation hazard in Dakoro area of Niger. Groundwater for Sustainable Development, 2017, 5, 235-243.	2.3	2
23	Chemical evolution of groundwater in the Wilcox aquifer of the northern Gulf Coastal Plain, USA. Hydrogeology Journal, 2017, 25, 2403-2418.	0.9	8
24	Water and soil quality at two eastern-Kentucky (USA) coal fires. Environmental Earth Sciences, 2016, 75, 1.	1.3	16
25	Use of Nitrogenâ€15â€Enriched <i>Escherichia coli</i> as a Bacterial Tracer in Karst Aquifers. Ground Water, 2016, 54, 830-839.	0.7	4
26	Prevalence of and Relationship between Two Human-Associated DNA Biomarkers for Bacteroidales in an Urban Watershed. Journal of Environmental Quality, 2015, 44, 1694-1698.	1.0	4
27	Too Hot to Touch: The Problem of High-Level Nuclear Waste. Ground Water, 2014, 52, 335-336.	0.7	0
28	Bourbon and springs in the Inner Bluegrass region of Kentucky. , 2012, , 19-31.		2
29	Solute chemistry and arsenic fate in aquifers between the Himalayan foothills and Indian craton (including central Gangetic plain): Influence of geology and geomorphology. Geochimica Et Cosmochimica Acta, 2012, 90, 283-302.	1.6	98
30	Arsenic and other toxic elements in surface and groundwater systems. Applied Geochemistry, 2011, 26, 415-420.	1.4	12
31	Elevated arsenic in deeper groundwater of the western Bengal basin, India: Extent and controls from regional to local scale. Applied Geochemistry, 2011, 26, 600-613.	1.4	134
32	Differences in pathogen indicators between proximal urban and rural karst springs, Central Kentucky, USA. Environmental Earth Sciences, 2011, 64, 47-55.	1.3	13
33	Implications and concerns of deep-seated disposal of hydrocarbon exploration produced water using three-dimensional contaminant transport model in Bhit Area, Dadu District of Southern Pakistan. Environmental Monitoring and Assessment, 2010, 170, 395-406.	1.3	3
34	Sediment discharges during storm flow from proximal urban and rural karst springs, central Kentucky, USA. Journal of Hydrology, 2010, 383, 280-290.	2.3	17
35	Controls on Ground Water Chemistry in the Central Couloir Sud Rifain, Morocco. Ground Water, 2010, 48, 306-319.	0.7	9
36	Incorporating a Watershed-Based Summary Field Exercise into an Introductory Hydrogeology Course. Journal of Geoscience Education, 2010, 58, 214-220.	0.8	8

#	Article	IF	Citations
37	Springs and the Origin of Bourbon. Ground Water, 2009, 47, 605-610.	0.7	2
38	Geologic, geomorphic and hydrologic framework and evolution of the Bengal basin, India and Bangladesh. Journal of Asian Earth Sciences, 2009, 34, 227-244.	1.0	151
39	Chemical evolution in the high arsenic groundwater of the Huhhot basin (Inner Mongolia, PR China) and its difference from the western Bengal basin (India). Applied Geochemistry, 2009, 24, 1835-1851.	1.4	138
40	Hydrogeochemical comparison and effects of overlapping redox zones on groundwater arsenic near the Western (Bhagirathi sub-basin, India) and Eastern (Meghna sub-basin, Bangladesh) margins of the Bengal Basin. Journal of Contaminant Hydrology, 2008, 99, 31-48.	1.6	145
41	Groundwater discharge along a channelized Coastal Plain stream. Journal of Hydrology, 2008, 360, 252-264.	2.3	17
42	Groundwater-derived contaminant fluxes along a channelized Coastal Plain stream. Journal of Hydrology, 2008, 360, 265-280.	2.3	9
43	Deeper groundwater chemistry and geochemical modeling of the arsenic affected western Bengal basin, West Bengal, India. Applied Geochemistry, 2008, 23, 863-894.	1.4	233
44	Groundwater Flow and Reservoir Management in a Tributary Watershed along Kentucky Lake. Journal of the Kentucky Academy of Science, 2007, 68, 11-23.	0.7	4
45	Regional-scale stable isotopic signatures of recharge and deep groundwater in the arsenic affected areas of West Bengal, India. Journal of Hydrology, 2007, 334, 151-161.	2.3	127
46	The Future of Hydrogeology, Then and Now: A Look Back at O.E. Meinzer?s Perspectives, 1934 to 1947. Ground Water, 2007, 45, 246-249.	0.7	5
47	Regional hydrostratigraphy and groundwater flow modeling in the arsenic-affected areas of the western Bengal basin, West Bengal, India. Hydrogeology Journal, 2007, 15, 1397-1418.	0.9	168
48	Stable isotopic fingerprint of a hyporheic–hypolentic boundary in a reservoir. Hydrogeology Journal, 2006, 14, 1688-1695.	0.9	7
49	Discussion of Associations Between Rural Land Uses and Ground Water Quality in the Ogallala Aquifer, Northwest Texas by Paul F. Hudak (2002), Ground Water Monitoring & Remediation , v. 22, no. 4, pages 117-120. Ground Water Monitoring and Remediation, 2003, 23, 97-98.	0.6	O
50	Groundwater recharge and chemical evolution in the southern High Plains of Texas, USA. Hydrogeology Journal, 2001, 9, 522-542.	0.9	27
51	Trichloroethene Biodegradation Potential in Wetland Soils and Paleowetland Sediments. Bioremediation Journal, 2001, 5, 27-50.	1.0	3
52	Spatial and Temporal Variability in Seepage Between a Contaminated Aquifer and Tributaries to the Ohio River. Ground Water Monitoring and Remediation, 2000, 20, 129-146.	0.6	36
53	Nitrate reduction during ground-water recharge, Southern High Plains, Texas. Journal of Contaminant Hydrology, 2000, 40, 335-363.	1.6	51
54	Controls on the regional-scale salinization of the Ogallala aquifer, Southern High Plains, Texas, USA. Applied Geochemistry, 2000, 15, 849-864.	1.4	48

Alan E Fryar

#	Article	IF	CITATIONS
55	Modeling regional salinization of the Ogallala aquifer, Southern High Plains, TX, USA. Journal of Hydrology, 2000, 238, 44-64.	2.3	36
56	Hydraulic-conductivity reduction, reaction-front propagation, and preferential flow within a model reactive barrier. Journal of Contaminant Hydrology, 1998, 32, 333-351.	1.6	33
57	Modeling the removal of metals from groundwater by a reactive barrier: Experimental results. Water Resources Research, 1994, 30, 3455-3469.	1.7	16