Maria Pia Rigobello

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8419447/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SOD1 in ALS: Taking Stock in Pathogenic Mechanisms and the Role of Glial and Muscle Cells. Antioxidants, 2022, 11, 614.	2.2	26
2	Mitochondrial depletion of glutaredoxin 2 induces metabolic dysfunction-associated fatty liver disease in mice. Redox Biology, 2022, 51, 102277.	3.9	13
3	Nrf2-Activating Bioactive Peptides Exert Anti-Inflammatory Activity through Inhibition of the NF-ήB Pathway. International Journal of Molecular Sciences, 2022, 23, 4382.	1.8	15
4	The Determining Role of Mitochondrial Reactive Oxygen Species Generation and Monoamine Oxidase Activity in Doxorubicin-Induced Cardiotoxicity. Antioxidants and Redox Signaling, 2021, 34, 531-550.	2.5	27
5	Comparative analysis of the antioxidant capacity and lipid and protein oxidation of soy and oats beverages. Food Production Processing and Nutrition, 2021, 3, .	1.1	9
6	Milk-derived bioactive peptides exhibit antioxidant activity through the Keap1-Nrf2 signaling pathway. Journal of Functional Foods, 2020, 64, 103696.	1.6	108
7	Fermented Soy-Derived Bioactive Peptides Selected by a Molecular Docking Approach Show Antioxidant Properties Involving the Keap1/Nrf2 Pathway. Antioxidants, 2020, 9, 1306.	2.2	41
8	Platinum(II) Complexes Bearing Triphenylphosphine and Chelating Oximes: Antiproliferative Effect and Biological Profile in Resistant Cells. ChemMedChem, 2020, 15, 1464-1472.	1.6	11
9	Identification of New Peptides from Fermented Milk Showing Antioxidant Properties: Mechanism of Action. Antioxidants, 2020, 9, 117.	2.2	66
10	Small Structural Differences between Two Ferrocenyl Diphenols Determine Large Discrepancies of Reactivity and Biological Effects. ChemMedChem, 2019, 14, 1717-1726.	1.6	17
11	Dimers of glutaredoxin 2 as mitochondrial redox sensors in selenite-induced oxidative stress. Metallomics, 2019, 11, 1241-1251.	1.0	7
12	Antioxidant Properties of Fermented Soy during Shelf Life. Plant Foods for Human Nutrition, 2019, 74, 287-292.	1.4	19
13	Insight into antioxidant properties of milkâ€derived bioactive peptides in vitro and in a cellular model. Journal of Peptide Science, 2019, 25, e3162.	0.8	21
14	Milk-derived bioactive peptides protect against oxidative stress in a Caco-2 cell model. Food and Function, 2018, 9, 1245-1253.	2.1	49
15	Significance of the mitochondrial thioredoxin reductase in cancer cells: An update on role, targets and inhibitors. Free Radical Biology and Medicine, 2018, 127, 62-79.	1.3	97
16	Tamoxifen-like metallocifens target the thioredoxin system determining mitochondrial impairment leading to apoptosis in Jurkat cells. Metallomics, 2017, 9, 949-959.	1.0	30
17	Oxidative changes in lipids, proteins, and antioxidants in yogurt during the shelf life. Food Science and Nutrition, 2017, 5, 1079-1087.	1.5	45
18	Characterization of Hydrophilic Gold(I) N-Heterocyclic Carbene (NHC) Complexes as Potent TrxR Inhibitors Using Biochemical and Mass Spectrometric Approaches. Inorganic Chemistry, 2017, 56, 14237-14250.	1.9	76

MARIA PIA RIGOBELLO

#	Article	IF	CITATIONS
19	Enzymatic oxidation of ansa-ferrocifen leads to strong and selective thioredoxin reductase inhibition in vitro. Journal of Inorganic Biochemistry, 2016, 165, 146-151.	1.5	19
20	Mitochondrial Thioredoxin System as a Modulator of Cyclophilin D Redox State. Scientific Reports, 2016, 6, 23071.	1.6	46
21	Osmocenyl-tamoxifen derivatives target the thioredoxin system leading to a redox imbalance in Jurkat cells. Journal of Inorganic Biochemistry, 2016, 160, 296-304.	1.5	21
22	Evidence for Targeting Thioredoxin Reductases with Ferrocenyl Quinone Methides. A Possible Molecular Basis for the Antiproliferative Effect of Hydroxyferrocifens on Cancer Cells. Journal of Medicinal Chemistry, 2014, 57, 8849-8859.	2.9	102
23	Principles in Redox Signaling: From Chemistry to Functional Significance. Antioxidants and Redox Signaling, 2013, 18, 1557-1593.	2.5	166
24	Fluorescent silver(i) and gold(i)–N-heterocyclic carbene complexes with cytotoxic properties: mechanistic insights. Metallomics, 2013, 5, 1006.	1.0	121
25	Gold(I) Carbene Complexes Causing Thioredoxin 1 and Thioredoxin 2 Oxidation as Potential Anticancer Agents. Journal of Medicinal Chemistry, 2012, 55, 5518-5528.	2.9	221
26	Interaction of selenite and tellurite with thiol-dependent redox enzymes: Kinetics and mitochondrial implications. Free Radical Biology and Medicine, 2011, 50, 1620-1629.	1.3	27
27	Mitochondrial Thioredoxin Reductase. Methods in Enzymology, 2010, 474, 109-122.	0.4	40
28	Treatment of human cancer cells with selenite or tellurite in combination with auranofin enhances cell death due to redox shift. Free Radical Biology and Medicine, 2009, 47, 710-721.	1.3	59
29	Thioredoxin reductase: A target for gold compounds acting as potential anticancer drugs. Coordination Chemistry Reviews, 2009, 253, 1692-1707.	9.5	513
30	Gold(I) complexes determine apoptosis with limited oxidative stress in Jurkat T cells. European Journal of Pharmacology, 2008, 582, 26-34.	1.7	56
31	Evaluation of the Antioxidant Properties of Propofol and its Nitrosoderivative. Comparison with Homologue Substituted Phenols. Free Radical Research, 2004, 38, 315-321.	1.5	25
32	INTERACTION OF FRUCTOSE 1,6 DIPHOSPHATE WITH RED CELL MEMBRANE. Biochemical Society Transactions, 1981, 9, 177P-177P.	1.6	0