Evangelos Bakeas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8418841/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PM2.5-bound organosulfates in two Eastern Mediterranean cities: The dominance of isoprene organosulfates. Chemosphere, 2022, 297, 134103.	8.2	5
2	Polycyclic aromatic hydrocarbons and trace elements dietary intake in inhabitants of Athens, Greece, based on a duplicate portion study. Food and Chemical Toxicology, 2022, 165, 113087.	3.6	4
3	Primary and secondary organic aerosol in an urban/industrial site: Sources, health implications and the role of plastic enriched waste burning. Journal of Environmental Sciences, 2021, 99, 222-238.	6.1	26
4	Secondary organic aerosol markers and related polar organic compounds in summer aerosols from a sub-urban site in Athens: Size distributions, diurnal trends and source apportionment. Atmospheric Pollution Research, 2021, 12, 1-13.	3.8	8
5	Heart Failure and PAHs, OHPAHs, and Trace Elements Levels in Human Serum: Results from a Preliminary Pilot Study in Greek Population and the Possible Impact of Air Pollution. Molecules, 2021, 26, 3207.	3.8	14
6	Trace metals in the marine surface microlayer of coastal areas in the Aegean sea, Eastern Mediterranean. Estuarine, Coastal and Shelf Science, 2021, 259, 107462.	2.1	3
7	Human serum elements' levels and leukemia: A first pilot study from an adult Greek cohort. Journal of Trace Elements in Medicine and Biology, 2021, 68, 126833.	3.0	4
8	Monitoring of Polycyclic Aromatic Hydrocarbon Levels in Mussels (Mytilus galloprovincialis) from Aquaculture Farms in Central Macedonia Region, Greece, Using Gas Chromatography–Tandem Mass Spectrometry Method. Molecules, 2021, 26, 5953.	3.8	3
9	Occurrence and Distribution of Polycyclic Aromatic Hydrocarbons in the Marine Surface Microlayer of an Industrialized Coastal Area in the Eastern Mediterranean. Water (Switzerland), 2021, 13, 3174.	2.7	6
10	Secondary organic aerosol tracers and related polar organic compounds between urban and rural areas in the Eastern Mediterranean region: source apportionment and the influence of atmospheric oxidants. Environmental Sciences: Processes and Impacts, 2020, 22, 2212-2229.	3.5	1
11	Atmospheric Concentrations and Health Implications of PAHs, PCBs and PCDD/Fs in the Vicinity of a Heavily Industrialized Site in Greece. Applied Sciences (Switzerland), 2020, 10, 9023.	2.5	10
12	Polar organic compounds in PM10 and PM2.5 atmospheric aerosols from a background Eastern Mediterranean site during the winter period: Secondary formation, distribution and source apportionment. Atmospheric Environment, 2020, 237, 117622.	4.1	11
13	Determination of anabolic androgenic steroids as imidazole carbamate derivatives in human urine using liquid chromatography–tandem mass spectrometry. Journal of Separation Science, 2020, 43, 2154-2161.	2.5	8
14	Trace elements, polycyclic aromatic hydrocarbons, mineral composition, and FT-IR characterization of unrefined sea and rock salts: environmental interactions. Environmental Science and Pollution Research, 2020, 27, 10857-10868.	5.3	13
15	Trace elements bound to airborne PM10 in a heavily industrialized site nearby Athens: Seasonal patterns, emission sources, health implications. Atmospheric Pollution Research, 2019, 10, 1347-1356.	3.8	20
16	Identification of thiocyanates by Gas Chromatography – Mass Spectrometry in explosive residues used as a possible marker to indicate black powder usage. Talanta, 2019, 195, 456-462.	5.5	7
17	Discrimination of tetryl samples by gas chromatography – Isotope ratio mass spectrometry. Forensic Chemistry, 2019, 12, 42-45.	2.8	4
18	Facile synthesis of a 2-(2′-pyridyl)-4-(methylcarboxy)quinoline ruthenium (II) based catalyst precursor for transfer hydrogenation of aromatic ketones. Inorganic Chemistry Communication, 2018, 92, 64-68.	3.9	3

Evangelos Bakeas

#	Article	IF	CITATIONS
19	Pyridyl based ruthenium(II) catalyst precursors and their dihydride analogues as the catalytically active species for the transfer hydrogenation of ketones. Polyhedron, 2018, 154, 27-38.	2.2	3
20	An effective and low cost carbon based clean-up method for PCDD/Fs and PCBs analysis in food. Chemosphere, 2018, 206, 531-538.	8.2	12
21	A 2-(2'-pyridyl)quinoline ruthenium(II) complex as an active catalyst for the transfer hydrogenation of ketones. Open Chemistry, 2016, 14, 308-315.	1.9	6
22	A rapid method for the identification of nitrocellulose in high explosives and smokeless powders using GC–El–MS. Talanta, 2016, 151, 192-201.	5.5	21
23	Copper complexation in wet precipitation: Impact of different ligand sources. Atmospheric Environment, 2013, 80, 13-19.	4.1	9
24	Regulated, carbonyl and polycyclic aromatic hydrocarbon emissions from a light-duty vehicle fueled with diesel and biodiesel blends. Environmental Sciences: Processes and Impacts, 2013, 15, 412-422.	3.5	26
25	Biodiesel emissions profile in modern diesel vehicles. Part 2: Effect of biodiesel origin on carbonyl, PAH, nitro-PAH and oxy-PAH emissions. Science of the Total Environment, 2011, 409, 738-747.	8.0	126
26	Biodiesel emissions profile in modern diesel vehicles. Part 1: Effect of biodiesel origin on the criteria emissions. Science of the Total Environment, 2011, 409, 1670-1676.	8.0	66
27	Effect of biodiesel origin on regulated and particle-bound PAH (polycyclic aromatic hydrocarbon) emissions from a Euro 4 passenger car. Energy, 2011, 36, 5328-5337.	8.8	63
28	An experimental study on the impact of biodiesel origin on the regulated and PAH emissions from a Euro 4 light-duty vehicle. Fuel, 2011, 90, 3200-3208.	6.4	40
29	Impact of straight vegetable oil–diesel blends application on vehicle regulated and non-regulated emissions over legislated and real world driving cycles. Biomass and Bioenergy, 2011, 35, 3188-3198.	5.7	27
30	Effects of low concentration biodiesel blends application on modern passenger cars. Part 3: Impact on PAH, nitro-PAH, and oxy-PAH emissions. Environmental Pollution, 2010, 158, 1584-1594.	7.5	96
31	Effects of low concentration biodiesel blend application on modern passenger cars. Part 1: Feedstock impact on regulated pollutants, fuel consumption and particle emissions. Environmental Pollution, 2010, 158, 1451-1460.	7.5	59
32	The impact of soy-based biodiesel on PAH, nitro-PAH and oxy-PAH emissions from a passenger car operated over regulated and nonregulated driving cycles. Fuel, 2010, 89, 3876-3883.	6.4	71
33	Influence of Oxidized Biodiesel Blends on Regulated and Unregulated Emissions from a Diesel Passenger Car. Environmental Science & Technology, 2010, 44, 5306-5312.	10.0	51
34	The Effect of Biodiesel on PAHs, Nitro-PAHs and Oxy-PAHs Emissions from a Light Vehicle Operated Over the European and the Artemis Driving Cycles. , 2009, , .		11
35	Light vehicle regulated and unregulated emissions from different biodiesels. Science of the Total Environment, 2009, 407, 3338-3346.	8.0	128
36	Effects of diesel/biodiesel blends on regulated and unregulated pollutants from a passenger vehicle operated over the European and the Athens driving cycles. Atmospheric Environment, 2009, 43, 1745-1752.	4.1	92

#	Article	IF	CITATIONS
37	Regulated and unregulated emissions of a light duty vehicle operated on diesel/palm-based methyl ester blends over NEDC and a non-legislated driving cycle. Fuel, 2009, 88, 1078-1085.	6.4	63
38	Effects of biodiesel on passenger car fuel consumption, regulated and non-regulated pollutant emissions over legislated and real-world driving cycles. Fuel, 2009, 88, 1608-1617.	6.4	234
39	Regulated and Unregulated Emissions of a Euro 4 SUV Operated with Diesel and Soy-based Biodiesel Blends. SAE International Journal of Fuels and Lubricants, 0, 2, 115-131.	0.2	11